Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241524

RESUMO

Soft robots have gained popularity, especially in intraluminal applications, because their soft bodies make them safer for surgical interventions than flexures with rigid backbones. This study investigates a pressure-regulating stiffness tendon-driven soft robot and provides a continuum mechanics model for it towards using that in adaptive stiffness applications. To this end, first, a central single-chamber pneumatic and tri-tendon-driven soft robot was designed and fabricated. Afterward, the classic Cosserat's rod model was adopted and augmented with the hyperelastic material model. The model was then formulated as a boundary-value problem and was solved using the shooting method. To identify the pressure-stiffening effect, a parameter-identification problem was formulated to identify the relationship between the flexural rigidity of the soft robot and internal pressure. The flexural rigidity of the robot at various pressures was optimized to match theoretical deformation and experiments. The theoretical findings of arbitrary pressures were then compared with the experiment for validation. The internal chamber pressure was in the range of 0 to 40 kPa and the tendon tensions were in the range of 0 to 3 N. The theoretical and experimental findings were in fair agreement for tip displacement with a maximum error of 6.40% of the flexure's length.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4853-4859, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085721

RESUMO

Minimally invasive instruments are inserted per-cutaneously and are steered toward the desired anatomy. The low stiffness of instruments is an advantage; however, once the target is reached, the instrument usually is required to transmit force to the environment. The main limitation of the constant stiffness is predetermined maneuverability and cap of force transmission. Whereas, a highly flexible device can be safely steered through the body but is not suitable for payload limit, while a highly stiff device can have relatively high loads but cannot be steered in highly tortuous trajectories. To overcome this limitation, an adaptive stiffness soft robot was proposed, and the effects of the chamber pressure on the stiffness of the soft robot were investigated. To this end, a single-chamber pneumatic soft robot with one tendon was designed and fabricated. Afterward, a continuum mechanics model based on the nonlinear Cosserat rod model with hyperelastic material model and large deformation kinematics of the robot was developed. The shooting method solved the model as a boundary value problem with Dirichlet and Neumann boundary conditions. The results of the model showed stiffness adaptation feasibility with simultaneous tendon-driving and pneumatic actuation. Thus, to validate the theoretical findings, a series of experimental studies were performed with pressure in the range of 33 to 44 kPa and tendon tensions in the range of 0 to 2.7 N. The theoretical and experimental results for tip displacement and stiffness showed similar trends with a maximum error of 8.25%.


Assuntos
Condução de Veículo , Robótica , Aclimatação , Pesquisa , Tendões
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5248-5251, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019168

RESUMO

In the present study, a sensor-free force control framework for tendon-driven steerable catheters was proposed and validated. The hypothesis of this study was that the contact force between the catheter tip and the tissue could be controlled using the estimated force with a previously validated displacement-based viscoelastic tissue model. The tissue model was used in a feedback control loop. The model estimated the contact force based on a realtime estimation of catheter-tissue indentation depth performed by a data-driven inverse kinematic model. To test the hypothesis, a tendon-driven catheter (φ6 × 40mm) and a robotic catheter intervention system were prototyped and characterized. Three validation studies were performed to test the performance of the proposed system with static and dynamic inputs. The results showed that the system was capable of reaching to the desired force with a root-mean-square error of 0.03 ± 0.02N for static tests and 0.05 ± 0.04N for dynamic inputs. The main contribution of this study was providing a computationally efficient and sensor-free force control schema for tendon-driven catheters.


Assuntos
Ablação por Cateter , Catéteres , Desenho de Equipamento , Fenômenos Mecânicos , Tendões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...