Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(10): 4580-4597, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38349214

RESUMO

Liver cancer is one of the leading causes of death that motivating scientists worldwide to synthesize novel chemotherapeutics. Ru(II)-polypyridyl complexes are extensively studied for possible therapeutic and cellular applications due to their tunable coordination chemistry, structural diversity, ligand-exchange kinetics, accessible redox states, and rich photophysical or photochemical properties. Herein, we have synthesized a series of Ru(II) polypyridyl complexes [RuII(N^N)2(ox)] (1-3), where ox is oxalate (C2O42-) and N^N is 1,10-phenanthroline (phen) (1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (2), and dipyrido[3,2,-a:2',3'-c]phenazine (dppz) (3). Oxalate (ox2-) was opted as a bioactive dioxo ligand to prevent facile hydrolysis in aqueous media, thereby increasing the stability of the Ru(II)-polypyridyl complexes in physiological media. We thoroughly characterized all the complexes using ESI-MS, FT-IR, UV-vis, and 1H NMR spectroscopy and other physicochemical methods. The complexes were stable under physiological conditions and under low-energy green LED light (λirr = 530 nm). However, the photoirradiation of complexes resulted in the efficient generation of singlet oxygen (1O2) as a major reactive oxygen species (ROS). The role of the extended aromatic conjugation of the N^N-donor ligands in the complexes was demonstrated by their binding propensities with CT-DNA and bovine serum albumin (BSA). Both DNA intercalation and groove binding were evidenced, while tryptophan (Trp) and tyrosine (Tyr) binding site preferences were revealed from the synchronous fluorescence spectra (SFS) of BSA. The cytotoxic profiling of the complexes performed on hepatocellular carcinoma cells (HepG2) in the dark and in the presence of green light indicated their dose-dependent cytotoxicity. The [RuII(N^N)2(ox)] complexes exhibited enhanced photocytotoxicity mediated by efficient generation of cytotoxic 1O2 and effective interaction with DNA. All the complexes were internalized by the HepG2 liver cancer cells efficiently and localized to the cytoplasm and nucleus. The complexes exhibited potent anti-proliferative, anti-clonogenic, and anti-migratory effects on the cancer cells, suggesting their potential for therapeutic applications.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Rutênio/farmacologia , Rutênio/química , Ligantes , Oxalatos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
2.
Dalton Trans ; 51(48): 18416-18437, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36416455

RESUMO

Six photoactive ruthenium quaternary complexes (a four-component system consisting of three different N-donor ligands and Ru(II)): trans-[Ru(R-tpy)(pyz/ind)(sac)2] (1-6) containing substituted terpyridine (R-tpy), saccharin (sac), and monodentate N-donor heterocycles were designed. Here, R-tpy = 4'-(2-furyl (1, 2); thienyl (3, 4); pyridyl (5, 6))-2,2':6',2'' terpyridines, pyz = 1H-pyrazole for 1, 3 and 5 and ind = 1H-indazole for 2, 4 and 6. The azoles are present in a large number of FDA-approved clinical drugs and bioactive molecules. The saccharin acting as a carbonic anhydrase inhibitor (CA-IX) could potentially target aggressive hypoxic tumors that overexpress CA-IX. Such multi-functional ligands bound to a Ru(II)-photocage provide ample scope to tune the electronic structures, photochemistry, and synergistic effect of the photolabile ligands in photoactivated chemotherapy (PACT). The complexes were characterized using various spectroscopic studies, and the molecular structures were determined from X-ray crystallography. They exhibit a distorted octahedral {RuN6} geometry with equatorial sites coordinated to the tridentate N3-donor R-tpy and N-donor pyz/ind, while two transoidal axial sites bound to the N-donor saccharinate (sac) ligands. The solvolysis kinetics showed these complexes undergo facile ligand-exchange reactions in equilibrium with varying rates reflecting the possible electronic effect of the R-groups in R-tpy. The photoreactivity of the complexes in green (λex = 530 nm) LED light indicates that the complexes undergo photodissociation of the monodentate N-donors (i.e., sac/pyz/ind) and showed an efficient generation of singlet oxygen (Φ1O2 = 0.29-0.47), signifying the potential of these complexes in PACT and/or PDT. All the complexes show good binding affinity with CT-DNA with possible intercalation from extended planar polypyridyl ligands with duplex DNA and BSA. The synchronous fluorescence study with BSA suggested preferential interaction at the tryptophan residue in the protein microenvironment. The confocal microscopy studies showed adequate permeability and localization in the cytosol and nucleus of cervical cancer (HeLa) and breast cancer (MCF7) cells. The dose-dependent cytotoxicity of the complexes for both HeLa and MCF7 cells increases upon low-energy (365 nm) photoirradiation. The mechanistic studies revealed that the complexes induce apoptosis and generate reactive oxygen species (ROS) upon green light (λex = 530 nm) irradiation. Overall, these quaternary Ru(II) complexes equipped with three different types of ligands with distinct roles could pave the way for designing multi-targeted chemotherapeutic metallodrugs with synergistic roles for each bioactive ligand.


Assuntos
Rutênio , Sacarina , Estrutura Molecular , Sacarina/farmacologia , Ligantes , Azóis , Rutênio/farmacologia , Rutênio/química , DNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...