Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1000706

RESUMO

Non–small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DE miRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co-expression network. Next, four modules were selected based on the Zsummary score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20115071

RESUMO

PurposeSARS-CoV-2 infects cells via the human Angiotensin-converting enzyme 2 (ACE2) protein. The genetic variation of ACE2 function and expression across populations is still poorly understood. This study aims at better understanding the genetic basis of COVID-19 outcomes by studying association between genetic variation in ACE2 and disease severity in the Iranian population. MethodsWe analyzed two large Iranian cohorts and several publicly available human population variant databases to identify novel and previously known ACE2 exonic variants present in the Iranian population and considered those as candidate variants for association between genetic variation and disease severity. We genotyped these variants across three groups of COVID-19 patients with different clinical outcomes (mild disease, severe disease, and death) and evaluated this genetic variation with regard to clinical outcomes. ResultsWe identified 32 exonic variants present in Iranian cohorts or other public variant databases. Among those, 11 variants are novel and have thus not been described in other populations previously. Following genotyping of these 32 candidate variants, only the synonymous polymorphism (c.2247G>A) was detected across the three groups of COVID-19 patients. ConclusionGenetic variability of known and novel exonic variants was low among our COVID-19 patients. Our results do not provide support for the hypothesis that exonic variation in ACE2 has a sizeable impact on COVID-19 severity across the Iranian population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...