Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Syst Biol ; 11(1): 1, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28061857

RESUMO

BACKGROUND: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. RESULTS: We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. CONCLUSIONS: Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate.


Assuntos
Escherichia coli/fisiologia , Mapeamento de Interação de Proteínas , Biologia Computacional , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Fenótipo
2.
ACS Synth Biol ; 4(7): 788-795, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25848814

RESUMO

Targeting transgene expression to specific cell types in vivo has proven instrumental in characterizing the functional role of defined cell populations. Genetic classifiers, synthetic transgene constructs designed to restrict expression to particular classes of cells, commonly rely on transcriptional promoters to define cellular specificity. However, the large size of many natural promoters complicates their use in viral vectors, an important mode of transgene delivery in the brain and in human gene therapy. Here, we expanded upon an emerging classifier platform, orthogonal to promoter-based strategies, that exploits endogenous microRNA regulation to target gene expression. Such classifiers have been extensively explored in other tissues; however, their use in the nervous system has thus far been limited to targeting gene expression between neurons and supporting cells. Here, we tested the possibility of using combinatory microRNA regulation to specify gene targeting between neuronal subtypes, and successfully targeted inhibitory cells in the neocortex. These classifiers demonstrate the feasibility of designing a new generation of microRNA-based neuron-type- and brain-region-specific gene expression targeting neurotechnologies.


Assuntos
Encéfalo/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Animais , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lentivirus/genética , Camundongos , MicroRNAs/genética , Microscopia Confocal
3.
Langmuir ; 27(18): 11520-7, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21797243

RESUMO

Many organisms use macromolecules, often proteins or peptides, to control the growth of inorganic crystals into complex materials. The ability to model peptide-mineral interactions accurately could allow for the design of novel peptides to produce materials with desired properties. Here, we tested a computational algorithm developed to predict the structure of peptides on mineral surfaces. Using this algorithm, we analyzed energetic and structural differences between a 16-residue peptide (bap4) designed to interact with a calcite growth plane and single- and double-point mutations of the charged residues. Currently, no experimental method is available to resolve the structures of proteins on solid surfaces, which precludes benchmarking for computational models. Therefore, to test the models, we chemically synthesized each peptide and analyzed its effects on calcite crystal growth. Whereas bap4 affected the crystal growth by producing heavily stepped corners and edges, point mutants had variable influences on morphology. Calculated residue-specific binding energies correlated with experimental observations; point mutations of residues predicted to be crucial to surface interactions produced morphologies most similar to unmodified calcite. These results suggest that peptide conformation plays a role in mineral interactions and that the computational model supplies valid energetic and structural data that can provide information about expected crystal morphology.


Assuntos
Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Desenho de Fármacos , Modelos Moleculares , Mutação , Peptídeos/síntese química , Peptídeos/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...