Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(21): 18516-18522, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273584

RESUMO

In recent years, there has been a growing interest in edible and biodegradable films due to their sustainability, environmental friendliness, and their functionality. In this work, Aloe vera oil-added agar-gelatin films were prepared and characterized in terms of water content, degree of swelling, water solubility, antioxidant activity, and antimicrobial activity. The possibility of using these edible films for Kashar cheese packaging during cold storage was investigated. Physical, chemical, and microbiological properties of the packaged cheese samples were examined for 20 days of cold storage at 4 °C. A. vera oil-added films were found to have antibacterial activity against Escherichia coli and Staphylococcus aureus and antifungal activities against Aspergillus niger and Candida albicans. A. vera oil-added films showed high antioxidant activities, increasing with the increasing A. vera oil percentage in the formulation. The current study showed that at the end of 20 days of storage period, bacterial growth in A. vera oil-incorporated film-covered samples was 2.30 log CFU/g lower than the control samples, and the amount of yeast and mold in A. vera oil-added film-covered samples was 3.37 log CFU/g lower than control samples. This shows the efficiency of A. vera oil-incorporated agar-gelatin films during the refrigerated storage period. Our data evidenced the positive effect of A. vera oil-added agar-gelatin films on Kashar cheese packaging as an innovative and sustainable technique to maintain cheese quality and prevent food loss during storage.

2.
Lebensm Wiss Technol ; 134: 109947, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32834119

RESUMO

In this study, it was aimed to investigate the effects of both using curcumin and microencapsulation method on in vitro release behaivour of chia seed oil and its antioxidant potential during simulated gastrointestinal (GI) tract. Maltodextrin (MD) and gum Arabic (GA) was used as wall materials for freeze dried capsules. Sample 6, having 1:3 MD to GA ratio, 1:5 chia seed oil to wall material ratio and 40% total dry matter content, was found to have the optimum results in terms of emulsion stability (CI% = 0), zeta potential (-32.2 ± 0.8 mV) and size distribution (600 ± 8 nm). Moreover, release profiles of encapsulated chia seed oil samples were evaluated to determine if curcumin addition has any significant effect. The results revealed that curcumin addition decreased the release of chia seed oil from 44.6% to 37.2%. On contrary, it increased total phenolic content of in fraction of intestine to 22 mg gallic acid equivalents (GAE)/L.

3.
Int J Biol Macromol ; 155: 430-438, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32229209

RESUMO

Agar has numerous applications in biomedical and biopharmaceutical fields in gel form. However the hard and tough nature of agar films and their vulnerability to microbial attacks prevent their usage in wound dressing applications. In this work, agar - locust bean gum (LBG) and agar - salep films were prepared for the first time to improve its physical, antimicrobial and cell viability properties. LBG and salep incorporated films resulted in higher antimicrobial and cell viability properties than agar films, which are very important in wound dressing applications. Agar - LBG films had higher water vapor permeabilities and were insoluble in water and in phosphate buffer solutions. Salep incorporation resulted in lower water vapor permeability and films were soluble in both media. All films were transparent, allowing good observability. With LBG and salep addition, lower tensile strength films were obtained and thicknesses of all films were appropriate for wound dressing applications. Due to their solubility, agar - salep films can be preferred especially for the cases where removal from the wound without damaging the tissue structure is a priority.


Assuntos
Ágar/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bandagens , Galactanos/química , Galactanos/farmacologia , Mananas/química , Mananas/farmacologia , Gomas Vegetais/química , Gomas Vegetais/farmacologia , Animais , Antidiarreicos/química , Antidiarreicos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Camundongos , Células NIH 3T3 , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...