Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1204: 339633, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35397902

RESUMO

Development of nanotechnology and corresponding industries during the last decade resulted in a new challenge for analytical science. This includes an ultrasensitive detection and characterization of nanoparticles of different origin and other nanomaterials in various media, including so complex ones as food, biological or environmental samples. The goal of this review is a systematic analysis of possible approaches and description of physical principles behind these methods. The main attention is paid to optical methods which are considered by authors to be mostly effective for the formulated task. Different approaches for detection and analysis of nanoparticles in a volume as well as of those adsorbed on a surface are discussed. While the technologies based on direct analysis of nanoparticle suspensions belong to the established approaches whose development potential has been in large extent exhausted, the novel technologies based on the surface sensing of adsorbed nanoparticles demonstrate intensive development. Therefore, the final part of the review is focused on the wide-field surface plasmon resonance microscopy. It allows one an ultrasensitive detection and characterization of individual nanoparticles of different origin in complex media and provides numerous possibilities for subsequent chemical identification of the detected particles using a hyphenation with other analytical technologies.


Assuntos
Nanopartículas , Nanoestruturas , Microscopia , Nanotecnologia , Ressonância de Plasmônio de Superfície/métodos
2.
Curr Pharm Des ; 25(11): 1265-1289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31020934

RESUMO

BACKGROUND: Imitating nature in the design of bio-inspired drug delivery systems resulted in several success stories. However, the practical application of biomimicry is still largely unrealized owing to the fact that we tend to copy the shape more often than the whole biology. Interesting chemistry of polysaccharides provides endless possibilities for drug complex formation and creation of delivery systems with diverse morphological and surface properties. However, the type of biological response, which may be induced by these systems, remains largely unexploited. METHODS: Considering the most current research for the given topic, in this review, we will try to present the integrative approaches for the design of biomimetic DDS's with improved therapeutic or theranostic effects based on different algal polysaccharides that exert multiple biological functions. RESULTS: Algal polysaccharides may provide building blocks for bioinspired drug delivery systems capable of supporting the mechanical properties of nanomedicines and mimicking various biological processes by molecular interactions at the nanoscale. Numerous research studies demonstrate the efficacy and safety of multifunctional nanoparticles integrating several functions in one delivery system, composed of alginate, carrageenan, ulvan, fucoidan and their derivatives, intended to be used as bioartificial microenvironment or for diagnosis and therapy of different diseases. CONCLUSION: Nanodimensional structure of polysaccharide DDS's shows substantial influence on the bioactive motifs potential availability for interaction with a variety of biomolecules and cells. Evaluation of the nano dimensional structure-activity relationship is crucial for unlocking the full potential of the future application of polysaccharide bio-mimicking DDS in modern diagnostic and therapeutic procedures.


Assuntos
Biomimética , Sistemas de Liberação de Medicamentos , Nanotecnologia , Polissacarídeos/química , Carragenina , Phaeophyceae/química , Rodófitas/química , Propriedades de Superfície
3.
Arch Oral Biol ; 93: 31-46, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29803992

RESUMO

Recent advances in understanding the etiology and pathogenesis of periodontal disease and polymicrobial synergy in the dysbiotic oral microbial community endorsed novel therapeutic targets and assured further improvement in periodontal disease treatment. Moreover, understanding of the events at the molecular level inspired the researchers to alleviate the stress from the disease by applying the bottom-up approach and delivering the drugs at the site of action, using nanoscale medicines. This review is focused on promising strategies for rational design of nanopaharmaceuticals for periodontal disease treatment based on novel therapeutic targets and the potential of advanced concepts for inflammation cascade targeting. Due to their size, nanomedicines are capable to interact with the elements of the immune system through cell receptor binding and to subsequently influence specific intracellular signaling pathways activation. They might also interfere with different signaling molecules continuously involved in the disease progression, in order to abolish cell activation and block the production of proinflammatory substances. Different biomacromolecules can be trafficked to the site of action using nanomedicines for gene targeting: i) decoy oligodeoxynucleotide (ODN) for suppression of NF-κB transcription activity, ii) DNA therapeutics for modulation of cell inflammatory response and iii) siRNA for cytokine production silencing. However, despite the potential of the nanotechnology for improvement of periodontal disease treatment, the translation of nano-drug delivery systems to clinical therapy is hindered by the lack of standard procedures for proper safety and efficacy profile evaluation.


Assuntos
Terapia de Alvo Molecular/tendências , Nanomedicina/tendências , Doenças Periodontais/tratamento farmacológico , Animais , Interações Hospedeiro-Patógeno , Humanos
4.
Carbohydr Polym ; 186: 260-272, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29455987

RESUMO

The aim of this study was to develop chitosan (CS) microparticulated mucoadhesive drug delivery system (DDS) with improved therapeutic performance and biological responce. Ionotropic gelation/spray drying process was used for preparation of doxycycline hyclate (DOXY) loaded low and medium molecular weight (LMw and MMw) CS/sodium tripolyphosphate microparticles (CS/TPP MPs), further coated with ethyl cellulose (EC) using coacervation/solvent displacement technique. The relevant physico-chemical and biopharmaceutical properties were optimized using experimental design approach. Both coated and uncoated CS/TPP MPs showed high mucoadhesive potential and did not affect the viability of the tested epithelial cell line. The MPs induced slow and gradual apoptotic response in murine macrophage cell line RAW 264.7 and the observed effect depended upon formulation type and MP concentration. Biological effect of the CS-based MPs observed in our experiments point to synergism of the biological response of the carrier with the anti-inflammatory effect of DOXY.


Assuntos
Quitosana/química , Doxiciclina/química , Doxiciclina/uso terapêutico , Animais , Celulose/análogos & derivados , Celulose/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Doenças Periodontais/tratamento farmacológico , Polifosfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...