Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31190, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803968

RESUMO

Due to its high gravimetric capacity of hydrogen (10.5 wt%), LiAlH4 has been regarded as a promising material for solid-state hydrogen storage material for onboard usage. However, high decomposition temperature, poor kinetics and irreversibility retard its application. To counter this problem, various weight percentages of BaMnO3 are introduced into the LiAlH4 system as an additive in this work. As a result, the starting hydrogen release of LiAlH4 was reduced to 109-115 °C and the second desorption temperature occurred at around 134-158 °C, much lower than pure LiAlH4. The isothermal desorption kinetics also proved that faster desorption kinetics can be observed at 90 °C for 80 min. About 2.00-2.60 wt% of H2 could be desorbed by the composite, whereas only <1.00 wt% of H2 was desorbed by undoped LiAlH4. Additionally, adding BaMnO3 reduced the activation energies by 30 kJ/mol for the first stages and 34 kJ/mol for the second stages. Based on the X-ray diffraction result, the active species formed of MnO2 and Ba or Ba-containing materials are believed to be responsible for the noticeable enhancement in the desorption properties of LiAlH4.

2.
RSC Adv ; 8(28): 15667-15674, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35559118

RESUMO

In this study, the effect of nanolayer-like-shaped MgFe2O4 that is synthesised via a simple hydrothermal method on the performance of MgH2 for hydrogen storage is studied. MgH2 + 10 wt% MgFe2O4 is prepared by using the ball milling method. The MgFe2O4-doped MgH2 sample started to release H2 at approximately 250 °C, 90 °C and 170 °C lower than the milled and pure MgH2 respectively. At 320 °C, the isothermal desorption kinetic study has shown that the doped sample has desorbed approximately 4.8 wt% H2 in 10 min while the milled MgH2 desorbed less than 1.0 wt% H2. For isothermal absorption kinetics, the doped sample can absorb approximately 5.5 wt% H2 in 10 min at 200 °C. Meanwhile, the undoped sample absorbs only 4.0 wt% H2 in the same condition. The activation energy of 10 wt% MgFe2O4-doped MgH2 composite is 99.9 kJ mol-1, which shows a reduction of 33.1 kJ mol-1 compared to the milled MgH2 (133.0 kJ mol-1). X-ray diffraction spectra display the formation of new species which are Fe and MgO after dehydrogenation, and these new species are believed to act as the real catalyst that plays a crucial role in improving the sorption performance of the MgFe2O4-doped MgH2 system by providing a synergetic catalytic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...