Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014042

RESUMO

The Moroccan coast is characterized by a diversity of climate, reflecting a great richness and diversity of fauna and flora. By this, marine microbiota plays a fundamental role in many biogeochemical processes, environmental modifications, and responses to temperature changes. To date, no exploration by high-throughput techniques has been carried out on the characterization of the Moroccan marine microbiota. The objective of this work is to study the diversity and metabolic functions of MMM from the Moroccan coast (Atlantic and Mediterranean) according to the water source (WS) and the type of climate (CT) using the approach high-throughput sequencing of the 16SrRNA gene. Four water samples of twelve sampling sites from the four major climates along the Moroccan coastline were collected, and prokaryotic DNA was extracted. V4 region of 16S rRNA gene was amplified, and the product PCR was sequenced by Illumina Miseq. The ß-diversity and α-diversity indices were determined to assess the species richness and evenness. The obtained results were analyzed by Mothur and R software. A total of twenty-eight Bacterial phyla and twelve Archaea were identified from the samples. Proteobacteria, Bacteroidetes, and Cyanobacteria are the three key bacterial phyla, and the Archaeal phyla identified are: Euryarchaeota, Nanoarchaeaeota, Crenarchaeota, Hydrothermarchaeota, Asgardaeota, Diapherotrites, and Thaumarchaeota in the Moroccan coastline and the four climates studied. The whole phylum are involved in marine biogeochemical cycles, and through their functions they participate in the homeostasis of the ocean in the presence of pollutants or stressful biotic and abiotic factors. In conclusion, the obtained results reported sufficient deepness of sequencing to cover the majority of Archaeal and Bacterial genera in each site. We noticed a strong difference in microbiota diversity, abundance, and taxonomy inter- and intra-climates and water source without significant differences in function. To better explore this diversity, other omic approaches can be applied such as the metagenomic shotgun, and transcriptomic approaches allowing a better characterization of the Moroccan marine microbiota and to understand the mechanisms of its adaptation and its impacts in/on the ecosystem.

2.
Bioinform Biol Insights ; 16: 11779322211063993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023908

RESUMO

In the marine environment, coastal nutrient pollution and algal blooms are increasing in many coral reefs and surface waters around the world, leading to higher concentrations of dissolved organic carbon (DOC), nitrogen (N), phosphate (P), and sulfur (S) compounds. The adaptation of the marine microbiota to this stress involves evolutionary processes through mutations that can provide selective phenotypes. The aim of this in silico analysis is to elucidate the potential candidate hub proteins, biological processes, and key metabolic pathways involved in the pathogenicity of bacterioplankton during excess of nutrients. The analysis was carried out on the model organism Escherichia coli K-12, by adopting an analysis pipeline consisting of a set of packages from the Cystoscape platform. The results obtained show that the metabolism of carbon and sugars generally are the 2 driving mechanisms for the expression of virulence factors.

3.
Biomedicines ; 9(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34680481

RESUMO

Mitochondria are the cell's power site, transforming energy into a form that the cell can employ for necessary metabolic reactions. These organelles present their own DNA. Although it codes for a small number of genes, mutations in mtDNA are common. Molecular genetics diagnosis allows the analysis of DNA in several areas such as infectiology, oncology, human genetics and personalized medicine. Knowing that the mitochondrial DNA is subject to several mutations which have a direct impact on the metabolism of the mitochondrion leading to many diseases, it is therefore necessary to detect these mutations in the patients involved. To date numerous mitochondrial mutations have been described in humans, permitting confirmation of clinical diagnosis, in addition to a better management of the patients. Therefore, different techniques are employed to study the presence or absence of mitochondrial mutations. However, new mutations are discovered, and to determine if they are the cause of disease, different functional mitochondrial studies are undertaken using transmitochondrial cybrid cells that are constructed by fusion of platelets of the patient that presents the mutation, with rho osteosarcoma cell line. Moreover, the contribution of next generation sequencing allows sequencing of the entire human genome within a single day and should be considered in the diagnosis of mitochondrial mutations.

4.
Microbiol Insights ; 14: 1178636121999673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33795937

RESUMO

Microorganisms such as viruses, bacteria, and protozoa are the cause of many waterborne human infections. These microbes are either naturally present in aquatic environments or transferred within them by fecal sources. They remain in these environments for varying lengths of time before contaminating a new host. With the emergence of the COVID-19 pandemic, some studies have reported the presence of viral nucleic acids in stool samples from COVID-19 patients, suggesting the possibility of fecal-oral transmission. The SARS-CoV-2 RNA was thereby detected in the wastewater of symptomatic and asymptomatic people with a risk to human and environmental health. In this work, we try to discuss the different potential sources of this contamination, the forms of persistence in the environment, the techniques of partial elimination, and the possibility of creating new reservoirs.

5.
Bioinform Biol Insights ; 14: 1177932220906168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425510

RESUMO

Nowadays, the integration of biological data is a major challenge for bioinformatics. Many studies have examined gene expression in the epithelial tissue in the intestines of infants born to term and breastfed, generating a large amount of data. The integration of these data is important to understand the biological processes involved during bacterial colonization of the newborns intestine, particularly through breast milk. This work aims to exploit the bioinformatics approaches, to provide a new representation and interpretation of the interactions between differentially expressed genes in the host intestine induced by the microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...