Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthropod Struct Dev ; 36(4): 449-62, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18089121

RESUMO

Nearly nothing is known about the transition that visual brain regions undergo during metamorphosis, except for Drosophila in which larval eyes and the underlying neural structure are strongly reduced. We have studied the larvae of the sunburst diving beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae), which are sophisticated visually oriented predators characterized by six elaborate stemmata on each side of the head and an associated large optic lobe. We used general neurohistological staining and 3D reconstruction to determine how the eyes and optic lobe of T. marmoratus change morphologically during metamorphosis. We find that in third (last) instar larvae, the adult neuropils are already forming de novo dorsally and slightly anteriorly to the larval neuropils, while the latter rapidly degenerate. Larval eyes are eventually reduced to distinct areas with dark pigmentation. This complete reorganization, which may be an evolutionarily conserved trait in holometabolous insects, occurs despite the considerable costs that must apply to such a visually complex animal. Our findings are consistent with the concept that stemmata are homologous to the most posterior ommatidia of hemimetabolous insects, an idea also recently supported by molecular data.


Assuntos
Besouros/crescimento & desenvolvimento , Olho Composto de Artrópodes/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Animais , Evolução Biológica , Besouros/ultraestrutura , Olho Composto de Artrópodes/ultraestrutura , Larva , Lobo Óptico de Animais não Mamíferos/ultraestrutura
2.
Artigo em Inglês | MEDLINE | ID: mdl-17639412

RESUMO

Larvae of the predaceous diving beetle Thermonectus marmoratus bear six stemmata on each side of their head, two of which form relatively long tubes with linear retinas at their proximal ends. The physical organization of these eyes results in extremely narrow visual fields that extend only laterally in the horizontal body plane. There are other examples of animals possessing eyes with predominantly linear retinas, or with linear arrangements of specific receptor types. In these animals, the eyes, or parts of the eyes, are movable and perform scanning movements to increase the visual field. Based on anatomical data and observations of relatively transparent, immobilized young larvae, we report here that T. marmoratus larvae are incapable of moving their eyes or any part of their eyes within the head capsule. However, they do perform a series of bodily dorso-ventral pivots prior to prey capture, behaviorally extending the vertical visual field from 2 degrees to up to 50 degrees. Frame-by-frame analysis shows that such behavior is performed within a characteristic distance to the prey. These data provide first insights into the function of the very peculiar anatomical eye organization of T. marmoratus larvae.


Assuntos
Besouros/citologia , Comportamento Predatório/fisiologia , Animais , Larva/fisiologia , Fenômenos Fisiológicos Oculares , Células Receptoras Sensoriais/fisiologia , Visão Ocular/fisiologia , Campos Visuais/fisiologia
3.
Ann Bot ; 100(1): 91-100, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17556381

RESUMO

BACKGROUND AND AIMS: Fragmentation of natural habitats can negatively impact plant populations by leading to reduced genetic variation and increased genetic distance as populations become geographically and genetically isolated from one another. To test whether such detrimental effects occur within an urban landscape, the genetic structure of six populations of the perennial herb Viola pubescens was characterized in the metropolitan area of Greater Cincinnati in southwestern Ohio, USA. METHODS: Using three inter-simple sequence repeat (ISSR) markers, 51 loci amplified across all urban populations. For reference, four previously examined agricultural populations in central/northern Ohio and a geographically distant population in Michigan were also included in the analysis. KEY RESULTS: Urban populations retained high levels of genetic variation (percentage of polymorphic loci, P(p) = 80.7 %) with similar genetic distances among populations and an absence of unique alleles. Geographic and genetic distances were correlated with one another, and all populations grouped according to region. Individuals from urban populations clustered together and away from individuals from agricultural populations and from the Michigan population in a principle coordinates analysis. Hierarchical analysis of molecular variance (AMOVA) revealed that most of the genetic variability was partitioned within populations (69.1 %) and among groups (22.2 %) of southwestern Ohio, central/northern Ohio and Michigan groups. Mean F(st) was 0.308, indicating substantial population differentiation. CONCLUSIONS: It is concluded that urban fragmentation does not appear to impede gene flow in V. pubescens in southwestern Ohio. These results are consistent with life history traits of this species and the possibility of high insect abundance in urban habitats due to diverse floral resources and nesting sites. Combined with the cleistogamous breeding system of this species, pollinator availability in the urban matrix may buffer populations against detrimental effects of habitat fragmentation, at least in larger forest fragments. Consequently, it may be inappropriate to generalize about genetic effects of fragmentation across landscapes or even across plant species with different pollination systems.


Assuntos
Ecossistema , Repetições Minissatélites , Viola/genética , Marcadores Genéticos , Filogenia , Polimorfismo Genético , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...