Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 119: 103300, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325222

RESUMO

PURPOSE: The aim of the present study, conducted by a working group of the Italian Association of Medical Physics (AIFM), was to define typical z-resolution values for different digital breast tomosynthesis (DBT) models to be used as a reference for quality control (QC). Currently, there are no typical values published in internationally agreed QC protocols. METHODS: To characterize the z-resolution of the DBT models, the full width at half maximum (FWHM) of the artifact spread function (ASF), a technical parameter that quantifies the signal intensity of a detail along reconstructed planes, was analyzed. Five different commercial phantoms, CIRS Model 011, CIRS Model 015, Modular DBT phantom, Pixmam 3-D, and Tomophan, were evaluated on reconstructed DBT images and 82 DBT systems (6 vendors, 9 models) in use at 39 centers in Italy were involved. RESULTS: The ASF was found to be dependent on the detail size, the DBT angular acquisition range, the reconstruction algorithm and applied image processing. In particular, a progressively greater signal spread was observed as the detail size increased and the acquisition angle decreased. However, a clear correlation between signal spread and angular range width was not observed due to the different signal reconstruction and image processing strategies implemented in the algorithms developed by the vendors studied. CONCLUSIONS: The analysis led to the identification of typical z-resolution values for different DBT model-phantom configurations that could be used as a reference during a QC program.


Assuntos
Processamento de Imagem Assistida por Computador , Mamografia , Mamografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Artefatos , Algoritmos
2.
Clin Transl Imaging ; 4(6): 491-498, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933282

RESUMO

PURPOSE: Over the past decade, nuclear medicine experts have been seeking to minimize patient exposure to radiation in myocardial perfusion scintigraphy (MPS). This review describes the latest technological innovations in MPS, particularly with regard to dose reduction. METHODS: We searched in PubMed for original clinical papers in English, published after 2008, using the following research criteria: (dose) and ((reduction) or (reducing)) and ((myocardial) or (cardiac) or (heart)) and ((nuclear medicine) or (nuclear imaging) or (radionuclide) or (scintigraphy) or (SPET) or (SPECT)). Thereafter, recent reviews on the topic were considered and other relevant clinical papers were added to the results. RESULTS: Of 202 non-duplicate articles, 17 were included. To these, another eight papers cited in recent reviews were added. By optimizing the features of software, i.e., through algorithms for iterative reconstruction with resolution recovery (IRRs), and hardware, i.e., scanners and collimators, and by preferring, unless otherwise indicated, the use of stress-first imaging protocols, it has become possible to reduce the effective dose by at least 50% in stress/rest protocols, and by up to 89% in patients undergoing a diagnostic stress-only study with new technology. With today's SPECT/CT systems, the use of a stress-first protocol can conveniently be performed, resulting in an overall dose reduction of about 35% if two-thirds of stress-first examinations were considered definitively normal. CONCLUSION: Using innovative gamma cameras, collimators and software, as well as, unless otherwise indicated, stress-first imaging protocols, it has become possible to reduce significantly the effective dose in a high percentage of patients, even when X-ray CT scanning is performed for attenuation correction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...