Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4123, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914850

RESUMO

Oligogalacturonide-oxidases (OGOXs) and cellodextrin-oxidase (CELLOX) are plant berberine bridge enzyme-like oligosaccharide-oxidases (OSOXs) that oxidize, respectively, oligogalacturonides (OGs) and cellodextrins (CDs), thereby inactivating their elicitor nature and concomitantly releasing H2O2. Little is known about the physiological role of OSOX activity. By using an ABTS·+-reduction assay, we identified a novel reaction mechanism through which the activity of OSOXs on cell wall oligosaccharides scavenged the radical cation ABTS·+ with an efficiency dependent on the type and length of the oxidized oligosaccharide. In contrast to the oxidation of longer oligomers such as OGs (degree of polymerization from 10 to 15), the activity of OSOXs on short galacturonan- and cellulose-oligomers (degree of polymerization ≤ 4) successfully counteracted the radical cation-generating activity of a fungal laccase, suggesting that OSOXs can generate radical cation scavenging activity in the apoplast with a power proportional to the extent of degradation of the plant cell wall, with possible implications for redox homeostasis and defense against oxidative stress.


Assuntos
Peróxido de Hidrogênio , Oligossacarídeos , Peróxido de Hidrogênio/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Oxirredução , Lacase/metabolismo , Parede Celular/metabolismo , Cátions/metabolismo
2.
Biotechnol Biofuels Bioprod ; 15(1): 138, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510318

RESUMO

BACKGROUND: 1,3-ß-glucan is a polysaccharide widely distributed in the cell wall of several phylogenetically distant organisms, such as bacteria, fungi, plants and microalgae. The presence of highly active 1,3-ß-glucanases in fungi evokes the biological question on how these organisms can efficiently metabolize exogenous sources of 1,3-ß-glucan without incurring in autolysis. RESULTS: To elucidate the molecular mechanisms at the basis of 1,3-ß-glucan metabolism in fungal saprotrophs, the putative exo-1,3-ß-glucanase G9376 and a truncated form of the putative glucan endo-1,3-ß-glucosidase (ΔG7048) from Penicillium sumatraense AQ67100 were heterologously expressed in Pichia pastoris and characterized both in terms of activity and structure. G9376 efficiently converted laminarin and 1,3-ß-glucan oligomers into glucose by acting as an exo-glycosidase, whereas G7048 displayed a 1,3-ß-transglucanase/branching activity toward 1,3-ß-glucan oligomers with a degree of polymerization higher than 5, making these oligomers more recalcitrant to the hydrolysis acted by exo-1,3-ß-glucanase G9376. The X-ray crystallographic structure of the catalytic domain of G7048, solved at 1.9 Å of resolution, consists of a (ß/α)8 TIM-barrel fold characteristic of all the GH17 family members. The catalytic site is in a V-shaped cleft containing the two conserved catalytic glutamic residues. Molecular features compatible with the activity of G7048 as 1,3-ß-transglucanase are discussed. CONCLUSIONS: The antagonizing activity between ΔG7048 and G9376 indicates how opportunistic fungi belonging to Penicillium genus can feed on substrates similar for composition and structure to their own cell wall without incurring in a self-deleterious autohydrolysis.

3.
Mol Plant Microbe Interact ; 35(10): 881-886, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35704684

RESUMO

Oligogalacturonide (OG)-oxidase 1 (OGOX1) and cellodextrin (CD)-oxidase (CELLOX) are plant berberine bridge enzyme-like oligosaccharide oxidases that oxidize OGs and CDs, cell-wall fragments with the nature of damage-associated molecular patterns. The oxidation of OGs and CDs attenuates their elicitor activity and concomitantly releases H2O2. By using a multiple enzyme-based assay, we demonstrate that the H2O2 generated downstream of the combined action between a fungal polygalacturonase and OGOX1 or an endoglucanase and CELLOX can be directed by plant peroxidases (PODs) either towards a reaction possibly involved in plant defense, such as the oxidation of monolignol or a reaction possibly involved in a developmental event, such as the oxidation of auxin (indole-3-acetic acid), pointing to OGOX1 and CELLOX as enzymatic transducers between microbial glycoside hydrolases and plant PODs. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Celulase , Oxirredutases , Glicosídeo Hidrolases , Peróxido de Hidrogênio , Ácidos Indolacéticos , Oligossacarídeos , Oxirredutases N-Desmetilantes , Peroxidases , Plantas , Poligalacturonase , Transdutores
4.
Plant Physiol Biochem ; 169: 171-182, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34800821

RESUMO

During the infection, plant cells secrete different OG-oxidase (OGOX) paralogs, defense flavoproteins that oxidize the oligogalacturonides (OGs), homogalacturonan fragments released from the plant cell wall that act as Damage Associated Molecular Patterns. OGOX-mediated oxidation inactivates their elicitor nature, but on the other hand makes OGs less hydrolysable by microbial endo-polygalacturonases (PGs). Among the different plant defense responses, apoplastic alkalinization can further reduce the degrading potential of PGs by boosting the oxidizing activity of OGOXs. Accordingly, the different OGOXs so far characterized showed an optimal activity at pH values greater than 8. Here, an approach of molecular dynamics (MD)-guided mutagenesis succeeded in identifying the amino acids responsible for the pH dependent activity of OGOX1 from Arabidopsis thaliana. MD simulations indicated that in alkaline conditions (pH 8.5), the residues Asp325 and Asp344 are engaged in the formation of two salt bridges with Arg327 and Lys415, respectively, at the rim of enzyme active site. According to MD analysis, the presence of such ionic bonds modulates the size and flexibility of the cavity used to accommodate the OGs, in turn affecting the activity of OGOX1. Based on functional properties of the site-directed mutants OGOX1.D325A and OGOX.D344A, we demonstrated that Asp325 and Asp344 are major determinants of the alkaline-dependent activity of OGOX1.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , Ácido Aspártico , Botrytis/metabolismo , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Mutagênese , Oxirredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...