Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Invasive Cardiol ; 35(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37992331

RESUMO

OBJECTIVES: Several volume expansion protocols have been proposed to prevent contrast-associated acute kidney injury (CA-AKI). The aim of our study was to seek the ideal intravenous volume expansion to prevent CA-AKI in patients with chronic kidney disease (CKD) undergoing invasive cardiovascular procedures. METHODS: We analyzed 1927 CKD patients enrolled in 6 studies that took place from September 15, 2000 to June 6, 2019. Four volume expansion regiments were included: (1) conventional group (n=625); (2) bicarbonate group (n=255); (3) left ventricular end-diastolic pressure-guided group (n=355); and (4) urine flow rate-guided group (n=500). RESULTS: CA-AKI (serum creatinine increase ≥0.3 mg/dL at 48 hours) occurred in 224 (11%) patients. In patients with CA-AKI, volume expansion was lower (2090 ± 1382 mL vs 2551 ± 1716 mL; P less than .001) and acute pulmonary edema occurred more often (3.5% vs 0.29%; P less than .001). By ROC curve analysis, an absolute volume expansion greater than or equal to 1430 mL (AUC = 0.70) and a volume expansion to contrast media volume ratio greater than or equal to 17 (AUC = 0.57) were the best thresholds for freedom from CA-AKI. CONCLUSIONS: In our comprehensive pooled analysis, an absolute volume expansion greater than or equal to 1430 mL and a volume expansion to contrast media volume ratio greater than or equal to 17 are the best dichotomous thresholds for CA-AKI prevention. These cutoffs should be formally tested in a dedicated trial as a pragmatic means to prevent CA-AKI.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Meios de Contraste/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/prevenção & controle , Fatores de Risco , Creatinina
2.
Eur Radiol ; 32(9): 6017-6027, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35364711

RESUMO

OBJECTIVES: Computed tomography (CT) provides excellent anatomy assessment of the aortic annulus (AoA) and is utilized for pre-procedural planning of transcatheter aortic valve implantation (TAVI). We sought to investigate if geometrical characteristics of the AoA determined by CT may represent predictors of structural valve degeneration (SVD) in patients undergoing TAVI with balloon-expandable valves. METHODS: This is a retrospective study on 124 consecutive patients (mean age: 79 ± 7 years; female: 61%) undergoing balloon-expandable TAVI prospectively enrolled in a registry. AoA maximum diameter (Dmax), minimum diameter (Dmin), and area were assessed using pre-procedural CT. SVD was identified during follow-up with transthoracic echocardiography documenting structural prosthetic valve abnormalities with or without hemodynamic changes. RESULTS: The mean follow-up was 5.9 ± 1.7 years. SVD was found in 48 out of 124 patients (38%). AoA Dmax, Dmin, and area were significantly smaller in patients with SVD compared to patients without SVD (25.6 ± 2.2 mm vs. 27.1 ± 2.8 mm, p = 0.012; 20.5 ± 2.1 mm vs. 21.8 ± 2.1 mm, p = 0.001 and 419 ± 77 mm2 vs. 467 ± 88 mm2, p = 0.002, respectively). At univariable analysis, female sex, BSA, 23-mm prosthetic valve size, Dmax < 27.1 mm, and a Dmin < 19.9 mm were associated with SVD, whereas at multivariable analysis, only Dmin < 19.9 mm (OR = 2.873, 95% CI: 1.191-6.929, p = 0.019) and female sex (OR = 2.659, 95% CI: 1.095-6.458, p = 0.031) were independent predictors of SVD. CONCLUSIONS: Female sex and AoA Dmin < 19.9 mm are associated with SVD in patients undergoing TAVI with balloon-expandable valves. When implanting large prostheses in order to avoid paraprosthetic regurgitation, caution should be observed due to the risk of excessive stretching of the AoA Dmin, which may play a role in SVD. KEY POINTS: • Long-term durability is a concern for transcatheter aortic valve bioprosthesis. • CT provides an excellent assessment of the aortic annulus's geometrical characteristics for prosthesis sizing before transcatheter aortic valve implantation (TAVI). • Female sex and a small minimum aortic annulus diameter measured with CT are independent predictors of structural valve degeneration in patients undergoing TAVI with balloon-expandable valves.


Assuntos
Estenose da Valva Aórtica , Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Idoso , Idoso de 80 Anos ou mais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Feminino , Implante de Prótese de Valva Cardíaca/métodos , Humanos , Desenho de Prótese , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Substituição da Valva Aórtica Transcateter/métodos , Resultado do Tratamento
3.
Eur J Nucl Med Mol Imaging ; 49(9): 3119-3128, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35194673

RESUMO

PURPOSE: To evaluate the diagnostic accuracy of a deep learning (DL) algorithm predicting hemodynamically significant coronary artery disease (CAD) by using a rest dataset of myocardial computed tomography perfusion (CTP) as compared to invasive evaluation. METHODS: One hundred and twelve consecutive symptomatic patients scheduled for clinically indicated invasive coronary angiography (ICA) underwent CCTA plus static stress CTP and ICA with invasive fractional flow reserve (FFR) for stenoses ranging between 30 and 80%. Subsequently, a DL algorithm for the prediction of significant CAD by using the rest dataset (CTP-DLrest) and stress dataset (CTP-DLstress) was developed. The diagnostic accuracy for identification of significant CAD using CCTA, CCTA + CTP stress, CCTA + CTP-DLrest, and CCTA + CTP-DLstress was measured and compared. The time of analysis for CTP stress, CTP-DLrest, and CTP-DLStress was recorded. RESULTS: Patient-specific sensitivity, specificity, NPV, PPV, accuracy, and area under the curve (AUC) of CCTA alone and CCTA + CTPStress were 100%, 33%, 100%, 54%, 63%, 67% and 86%, 89%, 89%, 86%, 88%, 87%, respectively. Patient-specific sensitivity, specificity, NPV, PPV, accuracy, and AUC of CCTA + DLrest and CCTA + DLstress were 100%, 72%, 100%, 74%, 84%, 96% and 93%, 83%, 94%, 81%, 88%, 98%, respectively. All CCTA + CTP stress, CCTA + CTP-DLRest, and CCTA + CTP-DLStress significantly improved detection of hemodynamically significant CAD compared to CCTA alone (p < 0.01). Time of CTP-DL was significantly lower as compared to human analysis (39.2 ± 3.2 vs. 379.6 ± 68.0 s, p < 0.001). CONCLUSION: Evaluation of myocardial ischemia using a DL approach on rest CTP datasets is feasible and accurate. This approach may be a useful gatekeeper prior to CTP stress..


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Aprendizado Profundo , Reserva Fracionada de Fluxo Miocárdico , Imagem de Perfusão do Miocárdio , Humanos , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Valor Preditivo dos Testes
4.
J Thorac Imaging ; 37(1): 2-16, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524203

RESUMO

Ischemic cardiomyopathy (ICM) is one of the most common causes of congestive heart failure. In patients with ICM, tissue characterization with cardiac magnetic resonance imaging (CMR) allows for evaluation of myocardial abnormalities in acute and chronic settings. Myocardial edema, microvascular obstruction (MVO), intracardiac thrombus, intramyocardial hemorrhage, and late gadolinium enhancement of the myocardium are easily depicted using standard CMR sequences. In the acute setting, tissue characterization is mainly focused on assessment of ventricular thrombus and MVO, which are associated with poor prognosis. Conversely, in chronic ICM, it is important to depict late gadolinium enhancement and myocardial ischemia using stress perfusion sequences. Overall, with CMR's ability to accurately characterize myocardial tissue in acute and chronic ICM, it represents a valuable diagnostic and prognostic imaging method for treatment planning. In particular, tissue characterization abnormalities in the acute setting can provide information regarding the patients that may develop major adverse cardiac event and show the presence of ventricular thrombus; in the chronic setting, evaluation of viable myocardium can be fundamental for planning myocardial revascularization. In this review, the main findings on tissue characterization are illustrated in acute and chronic settings using qualitative and quantitative tissue characterization.


Assuntos
Cardiomiopatias , Isquemia Miocárdica , Cardiomiopatias/diagnóstico por imagem , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Isquemia Miocárdica/diagnóstico por imagem , Miocárdio
5.
Int J Cardiol ; 343: 164-170, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34517017

RESUMO

BACKGROUND: Despite the low spatial resolution of 2D-multisegment late gadolinium enhancement (2D-MSLGE) sequences, it may be useful in uncooperative patients instead of standard 2D single segmented inversion recovery gradient echo late gadolinium enhancement sequences (2D-SSLGE). The aim of the study is to assess the feasibility and comparison of 2D-MSLGE reconstructed with artificial intelligence reconstruction deep learning noise reduction (NR) algorithm compared to standard 2D-SSLGE in consecutive patients with ischemic cardiomyopathy (ICM). METHODS: Fifty-seven patients with known ICM referred for a clinically indicated CMR were enrolled in this study. 2D-MSLGE were reconstructed using a growing level of NR (0%,25%,50%,75%and 100%). Subjective image quality, signal to noise ratio (SNR) and contrast to noise ratio (CNR) were evaluated in each dataset and compared to standard 2D-SSLGE. Moreover, diagnostic accuracy, LGE mass and scan time were compared between 2D-MSLGE with NR and 2D-SSLGE. RESULTS: The application of NR reconstruction ≥50% to 2D-MSLGE provided better subjective image quality, CNR and SNR compared to 2D-SSLGE (p < 0.01). The best compromise in terms of subjective and objective image quality was observed for values of 2D-MSLGE 75%, while no differences were found in terms of LGE quantification between 2D-MSLGE versus 2D-SSLGE, regardless the NR applied. The sensitivity, specificity, negative predictive value, positive predictive value and accuracy of 2D-MSLGE NR 75% were 87.77%,96.27%,96.13%,88.16% and 94.22%, respectively. Time of acquisition of 2D-MSLGE was significantly shorter compared to 2D-SSLGE (p < 0.01). CONCLUSION: When compared to standard 2D-SSLGE, the application of NR reconstruction to 2D-MSLGE provides superior image quality with similar diagnostic accuracy.


Assuntos
Cardiomiopatias , Aprendizado Profundo , Algoritmos , Inteligência Artificial , Meios de Contraste , Estudos de Viabilidade , Gadolínio , Humanos , Imageamento por Ressonância Magnética
6.
Int J Cardiol ; 339: 203-210, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34242689

RESUMO

BACKGROUND: We aim to evaluate the value of Cardiac magnetic resonance (CMR) feature tracking (CMR-FT) in addition to Task Force Criteria(TFC) in patients with (arrhythmogenic cardiomyopathy) AC biopsy-proved. METHODS: Thirty-five patients with AC histologically proven who performed CMR with late gadolinium enhancement (LGE) acquisition were enrolled. The study population was divided in Group1 (negative CMR TFC and LV ejection fraction≥55%) and Group2 (positive CMR TFC and/or LVEF<55%) and compared to an age and gender-matched control group. CMR datasets of all patients were analyzed to calculate LV indexed end-diastolic (LVEDi) and end-systolic (LVESi) volumes and RV indexed end-diastolic (RVEDi) and end-systolic (RVESi) volumes, both LV ejection fraction (LVEF) and RV ejection fraction (RVEF). Moreover, LV and RV global longitudinal (GLS), circumferential (GCS) and radial (GRS) strain were measured. RESULTS: The AC patients showed both higher LVEDi (p:0.002) and RVEDi (p:0.017) and lower LVEF (p: 0.016) as compared to control patients. Moreover, AC patients showed impaired LV-GLS (p < 0.001), LV-GRS (p < 0.001), LV-GCS (p < 0.001) and RV-GRS (p:0.026) as compared to control subjects. Group1 patients showed a significant reduction of LV-GRS (p < 0.05) and LV-GCS p < 0.01) as compared to control subjects. At univariate analysis LV-GCS was the most discriminatory parameter between Group1 vs heathy subjects with an optimal cut-off of -15.8 (Sensitivity: 74%; Specificity: 10%). CONCLUSIONS: In patients with AC biopsy-proven, CMR-FT could improve the diagnostic yield in the subset of patients who results negative for imaging TFC criteria resulting as useful gatekeeper for indication of myocardial biopsy in case of equivocal clinical and imaging presentation.


Assuntos
Cardiomiopatias , Meios de Contraste , Biópsia , Gadolínio , Humanos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Volume Sistólico , Função Ventricular Esquerda
7.
Comput Methods Programs Biomed ; 204: 106059, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33812305

RESUMO

BACKGROUND AND OBJECTIVE: Segmentation of the left ventricular (LV) myocardium (Myo) and RV endocardium on cine cardiac magnetic resonance (CMR) images represents an essential step for cardiac-function evaluation and diagnosis. In order to have a common reference for comparing segmentation algorithms, several CMR image datasets were made available, but in general they do not include the most apical and basal slices, and/or gold standard tracing is limited to only one of the two ventricles, thus not fully corresponding to real clinical practice. Our aim was to develop a deep learning (DL) approach for automated segmentation of both RV and LV chambers from short-axis (SAX) CMR images, reporting separately the performance for basal slices, together with the applied criterion of choice. METHOD: A retrospectively selected database (DB1) of 210 cine sequences (3 pathology groups) was considered: images (GE, 1.5 T) were acquired at Centro Cardiologico Monzino (Milan, Italy), and end-diastolic (ED) and end-systolic frames (ES) were manually segmented (gold standard, GS). Automatic ED and ES RV and LV segmentation were performed with a U-Net inspired architecture, where skip connections were redesigned introducing dense blocks to alleviate the semantic gap between the U-Net encoder and decoder. The proposed architecture was trained including: A) the basal slices where the Myo surrounded the LV for at least the 50% and all the other slice; B) all the slices where the Myo completely surrounded the LV. To evaluate the clinical relevance of the proposed architecture in a practical use case scenario, a graphical user interface was developed to allow clinicians to revise, and correct when needed, the automatic segmentation. Additionally, to assess generalizability, analysis of CMR images obtained in 12 healthy volunteers (DB2) with different equipment (Siemens, 3T) and settings was performed. RESULTS: The proposed architecture outperformed the original U-Net. Comparing the performance on DB1 between the two criteria, no significant differences were measured when considering all slices together, but were present when only basal slices were examined. Automatic and manually-adjusted segmentation performed similarly compared to the GS (bias±95%LoA): LVEDV -1±12 ml, LVESV -1±14 ml, RVEDV 6±12 ml, RVESV 6±14 ml, ED LV mass 6±26 g, ES LV mass 5±26 g). Also, generalizability showed very similar performance, with Dice scores of 0.944 (LV), 0.908 (RV) and 0.852 (Myo) on DB1, and 0.940 (LV), 0.880 (RV), and 0.856 (Myo) on DB2. CONCLUSIONS: Our results support the potential of DL methods for accurate LV and RV contours segmentation and the advantages of dense skip connections in alleviating the semantic gap generated when high level features are concatenated with lower level feature. The evaluation on our dataset, considering separately the performance on basal and apical slices, reveals the potential of DL approaches for fast, accurate and reliable automated cardiac segmentation in a real clinical setting.


Assuntos
Imagem Cinética por Ressonância Magnética , Redes Neurais de Computação , Ventrículos do Coração/diagnóstico por imagem , Humanos , Itália , Imageamento por Ressonância Magnética , Estudos Retrospectivos
8.
Biomed Res Int ; 2021: 6678029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33511208

RESUMO

The recently published 2019 guidelines on chronic coronary syndromes (CCS) focus on the need for noninvasive imaging modalities to accurately establish the diagnosis of coronary artery disease (CAD) and assess the risk of clinical scenario occurrence. Appropriate patient management should rely on controlling symptoms, improving prognosis, and guiding each therapeutic strategy as well as monitoring disease progress. Among the noninvasive imaging modalities, cardiovascular magnetic resonance (CMR) has gained broad acceptance in past years due to its unique features in providing a complete assessment of CAD through data on cardiac anatomy and function and myocardial viability, with high spatial and temporal resolution and without ionizing radiation. In detail, evaluation of the presence and extent of myocardial ischemia through stress CMR (S-CMR) has shown a high rule-in power in detecting functionally significant coronary artery stenosis in patients suspected of CCS. Moreover, S-CMR technique may add significant prognostic value, as demonstrated by different studies which have progressively evidenced the valuable power of this multiparametric imaging modality in predicting adverse cardiac events. The latest scientific progress supports a greater expansion of S-CMR with improvement of quantitative myocardial perfusion analysis, myocardial strain, and native mapping within the same examination. Although further study is warranted, these techniques, which are currently mostly restricted to the research field, are likely to become increasingly prevalent in the clinical setting with the scope of increasing accuracy in the selection of patients to be sent to invasive revascularization. This review investigates the diagnostic and prognostic role of S-CMR in the context of CAD, by analysing a strong, long-standing, scientific evidence together with an appraisal of new advanced techniques which may potentially enrich CAD management in the next future.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Angiografia por Ressonância Magnética/métodos , Isquemia Miocárdica/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Função Ventricular Esquerda
9.
J Cardiovasc Comput Tomogr ; 15(1): 27-36, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32952101

RESUMO

Coronavirus disease 2019 (COVID-19) has become a rapid worldwide pandemic. While COVID-19 primarily manifests as an interstitial pneumonia and severe acute respiratory distress syndrome, severe involvement of other organs has been documented. In this article, we will review the role of non-contrast chest computed tomography in the diagnosis, follow-up and prognosis of patients affected by COVID-19 pneumonia with a detailed description of the imaging findings that may be encountered. Given that patients with COVID-19 may also suffer from coagulopathy, we will discuss the role of CT pulmonary angiography in the detection of acute pulmonary embolism. Finally, we will describe more advanced applications of CT in the differential diagnosis of myocardial injury with an emphasis on ruling out acute coronary syndrome and myocarditis.


Assuntos
COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , SARS-CoV-2
10.
Biomed Res Int ; 2020: 6649410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381570

RESUMO

Cardiac computed tomography angiography (CCTA) is widely used as a diagnostic tool for evaluation of coronary artery disease (CAD). Despite the excellent capability to rule-out CAD, CCTA may overestimate the degree of stenosis; furthermore, CCTA analysis can be time consuming, often requiring advanced postprocessing techniques. In consideration of the most recent ESC guidelines on CAD management, which will likely increase CCTA volume over the next years, new tools are necessary to shorten reporting time and improve the accuracy for the detection of ischemia-inducing coronary lesions. The application of artificial intelligence (AI) may provide a helpful tool in CCTA, improving the evaluation and quantification of coronary stenosis, plaque characterization, and assessment of myocardial ischemia. Furthermore, in comparison with existing risk scores, machine-learning algorithms can better predict the outcome utilizing both imaging findings and clinical parameters. Medical AI is moving from the research field to daily clinical practice, and with the increasing number of CCTA examinations, AI will be extensively utilized in cardiac imaging. This review is aimed at illustrating the state of the art in AI-based CCTA applications and future clinical scenarios.


Assuntos
Inteligência Artificial , Angiografia por Tomografia Computadorizada , Vasos Coronários/diagnóstico por imagem , Algoritmos , Cálcio/metabolismo , Doença da Artéria Coronariana/diagnóstico por imagem , Estenose Coronária/diagnóstico por imagem , Diagnóstico por Computador , Reserva Fracionada de Fluxo Miocárdico , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Pessoa de Meia-Idade , Isquemia Miocárdica/diagnóstico por imagem , Fenótipo , Placa Aterosclerótica/diagnóstico por imagem , Prognóstico , Risco
11.
J Clin Med ; 9(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287329

RESUMO

In the context of chronic coronary syndromes (CCS), coronary computed tomography angiography (CCTA) has gained broad acceptance as a noninvasive anatomical imaging tool with ability of excluding coronary stenosis with strong negative predictive value. Atherosclerotic plaque lesions are independent predictors of cardiovascular outcomes in high risk patients with known coronary artery disease (CAD). Calcium detection is commonly expressed through the coronary artery calcium score (CACS), but further research is warranted to confirm the powerness of a CACS-only strategy in both diagnosis and prognosis assessment. Recent studies evidence how defined plaque composition characteristics effectively relate to the risk of plaque instabilization and the overall ischemic burden. Fractional flow reserve from CCTA (FFR-CT) has been demonstrated as a reliable method for noninvasive functional evaluation of coronary lesions severity, while the assessment of perfusion imaging under stress conditions is growing as a useful tool for assessment of myocardial ischemia. Moreover, specific applications in procedural planning of transcatheter valve substitution and follow-up of heart transplantation have gained recent importance. This review illustrates the incremental role of CCTA, which can potentially revolutionize the diagnosis and management pathway within the wide clinical spectrum of CCS.

12.
Diagnostics (Basel) ; 10(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003571

RESUMO

Non-ischemic cardiomyopathies represent a heterogeneous group of myocardial diseases potentially leading to heart failure, life-threatening arrhythmias, and eventually death. Myocardial dysfunction is associated with different underlying pathological processes, ultimately inducing changes in morphological appearance. Thus, classification based on presenting morphological phenotypes has been proposed, i.e., dilated, hypertrophic, restrictive, and right ventricular cardiomyopathies. In light of the key diagnostic and prognostic role of morphological and functional features, cardiovascular imaging has emerged as key element in the clinical workflow of suspected cardiomyopathies, and above all, cardiovascular magnetic resonance (CMR) represents the ideal technique to be used: thanks to its physical principles, besides optimal spatial and temporal resolutions, incomparable contrast resolution allows to assess myocardial tissue abnormalities in detail. Traditionally, weighted images and late enhancement images after gadolinium-based contrast agent administration have been used to perform tissue characterization, but in the last decade quantitative assessment of pre-contrast longitudinal relaxation time (native T1), post-contrast longitudinal relaxation time (post-contrast T1) and transversal relaxation time (T2), all displayed with dedicated pixel-wise color-coded maps (mapping), has contributed to give precious knowledge insight, with positive influence of diagnostic accuracy and prognosis assessment, mostly in the setting of the hypertrophic phenotype. This review aims to describe the available evidence of the role of mapping techniques in the assessment of hypertrophic phenotype, and to suggest their integration in the routine CMR evaluation of newly diagnosed cardiomyopathies with increased wall thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...