Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16823, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207387

RESUMO

Light-field microscopy represents a promising solution for microscopic volumetric imaging, thanks to its capability to encode information on multiple planes in a single acquisition. This is achieved through its peculiar simultaneous capture of information on light spatial distribution and propagation direction. However, state-of-the-art light-field microscopes suffer from a detrimental loss of spatial resolution compared to standard microscopes. In this article, we experimentally demonstrate the working principle of a new scheme, called Correlation Light-field Microscopy (CLM), where the correlation between two light beams is exploited to achieve volumetric imaging with a resolution that is only limited by diffraction. In CLM, a correlation image is obtained by measuring intensity correlations between a large number of pairs of ultra-short frames; each pair of frames is illuminated by the two correlated beams, and is exposed for a time comparable with the source coherence time. We experimentally show the capability of CLM to recover the information contained in out-of-focus planes within three-dimensional test targets and biomedical phantoms. In particular, we demonstrate the improvement of the depth of field enabled by CLM with respect to a conventional microscope characterized by the same resolution. Moreover, the multiple perspectives contained in a single correlation image enable reconstructing over 50 distinguishable transverse planes within a 1 mm3 sample.


Assuntos
Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...