Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145684

RESUMO

Modulation of drug transporter activity at mucosal sites of HIV-1 transmission may be exploited to optimize retention of therapeutic antiretroviral drug concentrations at target submucosal CD4+ T cells. Previously, we showed that darunavir was a substrate for the P-glycoprotein efflux drug transporter in colorectal mucosa. Equivalent studies in the cervicovaginal epithelium have not been reported. Here, we describe the development of a physiologically relevant model to investigate the permeability of antiretroviral drugs across the vaginal epithelium. Barrier properties of the HEC-1A human endometrial epithelial cell line were determined, in a dual chamber model, by measurement of transepithelial electrical resistance, immunofluorescent staining of tight junctions and bi-directional paracellular permeability of mannitol. We then applied this model to investigate the permeability of tenofovir, darunavir and dapivirine. Efflux ratios indicated that the permeability of each drug was transporter-independent in this model. Reduction of pH to physiological levels in the apical compartment increased absorptive transfer of darunavir, an effect that was reversed by inhibition of MRP efflux transport via MK571. Thus, low pH may increase the transfer of darunavir across the epithelial barrier via increased MRP transporter activity. In a previous in vivo study in the macaque model, we demonstrated increased MRP2 expression following intravaginal stimulation with darunavir which may further increase drug uptake. Stimulation with inflammatory modulators had no effect on drug permeability across HEC-1A barrier epithelium but, in the VK2/E6E7 vaginal cell line, increased expression of both efflux and uptake drug transporters which may influence darunavir disposition.

3.
Mol Pharm ; 17(3): 852-864, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017579

RESUMO

Clinical trials have demonstrated partial protection against HIV-1 infection by vaginal microbicide formulations based on antiretroviral (ARV) drugs. Improved formulations that will maintain sustained drug concentrations at viral target sites in the cervicovaginal mucosa are needed. We have previously demonstrated that treatment of cervicovaginal cell lines with ARV drugs can alter gene expression of drug transporters, suggesting that the mucosal disposition of ARV drugs delivered vaginally can be modulated by drug transporters. This study aimed to investigate in vivo modulation of drug transporter expression in a nonhuman primate model by tenofovir and darunavir released from film formulations. Cervicovaginal tissues were collected from drug-naïve macaques and from macaques vaginally treated with film formulations of tenofovir or darunavir. Drug release in vaginal fluid as well as drug absorption in cervicovaginal tissues and lymph nodes were verified by mass spectrometry. The effects of exposure to drugs on the expression of transporters relevant to ARV drugs were evaluated by quantitative PCR. We showed expression in cervicovaginal tissue of drug-naïve macaques of transporters important for distribution of ARV drugs, albeit at lower levels compared to human tissue for key transporters including P-glycoprotein. Concentrations of tenofovir and darunavir well above the EC50 values determined in vitro were detected in vaginal fluid and vaginal tissues of macaques treated with drug-dissolving films over 24 h and were also comparable to those shown previously to modulate drug transporter expression. Accordingly, Multidrug Resistance associated Protein 2 (MRP2) in cervicovaginal tissue was upregulated by both tenofovir and darunavir. The two drugs also differentially induced and/or inhibited expression of key uptake transporters for reverse transcriptase inhibitors and protease inhibitors. The lower expression of key transporters in macaques may result in increased retention of ARV drugs at the simian cervicovaginal mucosa compared to the human mucosa and has implications for translation of preclinical data. Modulation of drug transporter expression by tenofovir and darunavir points to the potential benefit of MRP2 inhibition to increase ARV drug penetration through the cervicovaginal epithelium.


Assuntos
Darunavir/farmacocinética , Composição de Medicamentos/métodos , Infecções por HIV/prevenção & controle , Inibidores da Protease de HIV/farmacocinética , HIV-1 , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Tenofovir/farmacocinética , Regulação para Cima/efeitos dos fármacos , Vagina/metabolismo , Administração Intravaginal , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Darunavir/administração & dosagem , Modelos Animais de Doenças , Feminino , Infecções por HIV/virologia , Inibidores da Protease de HIV/administração & dosagem , Humanos , Macaca fascicularis , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Tenofovir/administração & dosagem , Distribuição Tecidual
4.
PLoS One ; 6(12): e28307, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163292

RESUMO

Mannose-binding C-type lectin receptors, expressed on Langerhans cells and subepithelial dendritic cells (DCs) of cervico-vaginal tissues, play an important role in HIV-1 capture and subsequent dissemination to lymph nodes. DC-SIGN has been implicated in both productive infection of DCs and the DC-mediated trans infection of CD4(+) T cells that occurs in the absence of replication. However, the molecular events that underlie this efficient transmission have not been fully defined. In this study, we have examined the effect of the extracellular domains of DC-SIGN and Langerin on the stability of the interaction of the HIV-1 envelope glycoprotein with CD4 and also on replication in permissive cells. Surface plasmon resonance analysis showed that DC-SIGN increases the binding affinity of trimeric gp140 envelope glycoproteins to CD4. In contrast, Langerin had no effect on the stability of the gp140:CD4 complex. In vitro infection experiments to compare DC-SIGN enhancement of CD4-dependent and CD4-independent strains demonstrated significantly lower enhancement of the CD4-independent strain. In addition DC-SIGN increased the relative rate of infection of the CD4-dependent strain but had no effect on the CD4-independent strain. DC-SIGN binding to the HIV envelope protein effectively increases exposure of the CD4 binding site, which in turn contributes to enhancement of infection.


Assuntos
Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/virologia , Moléculas de Adesão Celular/fisiologia , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Lectinas Tipo C/fisiologia , Receptores de Superfície Celular/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Monoclonais/química , Sítios de Ligação , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Humanos , Cinética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...