Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biosci ; 37(5): 817-825, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38271977

RESUMO

OBJECTIVE: The aim of this study was to identify suitable polynomial regression for modeling the average growth trajectory and to estimate the relative development of the rib eye area, scrotal circumference, and morphometric measurements of Guzerat young bulls. METHODS: A total of 45 recently weaned males, aged 325.8±28.0 days and weighing 219.9±38.05 kg, were evaluated. The animals were kept on Brachiaria brizantha pastures, received multiple supplementations, and were managed under uniform conditions for 294 days, with evaluations conducted every 56 days. The average growth trajectory was adjusted using ordinary polynomials, Legendre polynomials, and quadratic B-splines. The coefficient of determination, mean absolute deviation, mean square error, the value of the restricted likelihood function, Akaike information criteria, and consistent Akaike information criteria were applied to assess the quality of the fits. For the study of allometric growth, the power model was applied. RESULTS: Ordinary polynomial and Legendre polynomial models of the fifth order provided the best fits. B-splines yielded the best fits in comparing models with the same number of parameters. Based on the restricted likelihood function, Akaike's information criterion, and consistent Akaike's information criterion, the B-splines model with six intervals described the growth trajectory of evaluated animals more smoothly and consistently. In the study of allometric growth, the evaluated traits exhibited negative heterogeneity (b<1) relative to the animals' weight (p<0.01), indicating the precocity of Guzerat cattle for weight gain on pasture. CONCLUSION: Complementary studies of growth trajectory and allometry can help identify when an animal's weight changes and thus assist in decision-making regarding management practices, nutritional requirements, and genetic selection strategies to optimize growth and animal performance.

2.
Evol Appl ; 15(4): 706-718, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35505883

RESUMO

The aim of this study was to identify novel lncRNA differentially expressed (DE) between divergent animals for beef tenderness and marbling traits in Nellore cattle. Longissimus thoracis muscle samples from the 20 most extreme bulls (of 80 bulls set) for tenderness, tender (n = 10) and tough (n = 10) groups, and marbling trait, high (n = 10) and low (n = 10) groups were used to perform transcriptomic analysis using RNA-Sequencing. For tenderness, 29 lncRNA were DE (p-value ≤ 0.01) in tough beef animals in relation to tender beef animals. We observed that genic lncRNAs, for example, lncRNA_595.1, were overlapping exonic part of the PICK gene, while lncRNA_3097.2 and lncRNA_3129.5 overlapped intronic part of the genes GADL1 and PSMD6. The lncRNA associated with PICK1, GADL1, and PMD6 genes were enriched in the pathways associated with the ionotropic glutamate receptor, gamma-aminobutyric acid synthesis, and the ubiquitin-proteasome pathway. For marbling, 50 lncRNA were DE (p-value ≤ 0.01) in high marbling group compared with low marbling animals. The genic lncRNAs, such as lncRNA_3191.1, were overlapped exonic part of the ITGAL gene, and the lncRNA_512.1, lncRNA_3721.1, and lncRNA_41.4 overlapped intronic parts of the KRAS and MASP1 genes. The KRAS and ITGAL genes were enriched in pathways associated with integrin signaling, which is involved in intracellular signals in response to the extracellular matrix, including cell form, mobility, and mediates progression through the cell cycle. In addition, the lincRNAs identified to marbling trait were associated with several genes related to calcium binding, muscle hypertrophy, skeletal muscle, lipase, and oxidative stress response pathways that seem to play a role important in the physiological processes related to meat quality. These findings bring new insights to better understand the biology mechanisms involved in the gene regulation of these traits, which will be valuable for a further investigation of the interactions between lncRNA and mRNAs, and of how these interactions may affect meat quality traits.

3.
Front Vet Sci ; 7: 568249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251259

RESUMO

Considering the importance of the diseases affecting the productive performance of animals in the dairy industry worldwide, it is necessary to implement tools that help to control and limit the occurrence of such diseases. As the increased somatic cell counts (SCC) are a direct expression of the inflammatory process, they are candidates to become the usual parameter for assessing udder health regarding milk quality and for monitoring mastitis incidences. Toll-Like Receptors are membrane proteins that play a key role in immunity, recognizing pathogens and, subsequently, activating immune responses. The present study was conducted to identify single nucleotide polymorphisms in the TLR4 gene of buffaloes and to analyze its associations with somatic cell counts. DNA samples of 120 Murrah buffaloes were used. The whole coding region of the TLR4 gene was amplified by polymerase chain reaction reactions and sequenced for polymorphism scanning. A total of 13 polymorphisms were identified for the sequenced regions of the TLR4, most of which are in the coding region. The association with the somatic cell score was highly significant (p < 0.001) for all identified polymorphisms of TLR4 gene (g.54621T>A, g.54429G>T, g.54407T>A, g.46616C>A, g.46613T>G, g.46612A>G, g.46611C>A, g.46609T>G, g.46541C>G, g.46526C>A, g.46516T>C, g.46376C>T, g.46372T>C). Therefore, it is suggested that the markers of the TLR4 gene can be used as molecular markers for mastitis resistance in buffaloes, due to their association with somatic cell counts.

5.
Genet Sel Evol ; 52(1): 46, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787790

RESUMO

BACKGROUND: Twenty-five phenotypes were measured as indicators of bull fertility (1099 Brahman and 1719 Tropical Composite bulls). Measurements included sperm morphology, scrotal circumference, and sperm chromatin phenotypes such as DNA fragmentation and protamine deficiency. We estimated the heritability of these phenotypes and carried out genome-wide association studies (GWAS) within breed, using the bovine high-density chip, to detect quantitative trait loci (QTL). RESULTS: Our analyses suggested that both sperm DNA fragmentation and sperm protamine deficiency are heritable (h2 from 0.10 to 0.22). To confirm these first estimates of heritability, further studies on sperm chromatin traits, with larger datasets are necessary. Our GWAS identified 12 QTL for bull fertility traits, based on at least five polymorphisms (P < 10-8) for each QTL. Five QTL were identified in Brahman and another seven in Tropical Composite bulls. Most of the significant polymorphisms detected in both breeds and nine of the 12 QTL were on chromosome X. The QTL were breed-specific, but for some traits, a closer inspection of the GWAS results revealed suggestive single nucleotide polymorphism (SNP) associations (P < 10-7) in both breeds. For example, the QTL for inhibin level in Braham could be relevant to Tropical Composites too (many polymorphisms reached P < 10-7 in the same region). The QTL for sperm midpiece morphological abnormalities on chromosome X (QTL peak at 4.92 Mb, P < 10-17) is an example of a breed-specific QTL, supported by 143 significant SNPs (P < 10-8) in Brahman, but absent in Tropical Composites. Our GWAS results add evidence to the mammalian specialization of the X chromosome, which during evolution has accumulated genes linked to spermatogenesis. Some of the polymorphisms on chromosome X were associated to more than one genetically correlated trait (correlations ranged from 0.33 to 0.51). Correlations and shared polymorphism associations support the hypothesis that these phenotypes share the same underlying cause, i.e. defective spermatogenesis. CONCLUSIONS: Genetic improvement for bull fertility is possible through genomic selection, which is likely more accurate if the QTL on chromosome X are considered in the predictions. Polymorphisms associated with male fertility accumulate on this chromosome in cattle, as in humans and mice, suggesting its specialization.


Assuntos
Bovinos/genética , Fertilidade/genética , Infertilidade Masculina/genética , Polimorfismo Genético , Cromossomo X/genética , Animais , Cruzamento/métodos , Bovinos/fisiologia , Evolução Molecular , Feminino , Masculino , Locos de Características Quantitativas , Seleção Genética
6.
Sci Rep ; 10(1): 8770, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471998

RESUMO

Highlighting genomic profiles for geographically distinct subpopulations of the same breed may provide insights into adaptation mechanisms to different environments, reveal genomic regions divergently selected, and offer initial guidance to joint genomic analysis. Here, we characterized similarities and differences between the genomic patterns of Angus subpopulations, born and raised in Canada (N = 382) and Brazil (N = 566). Furthermore, we systematically scanned for selection signatures based on the detection of autozygosity islands common between the two subpopulations, and signals of divergent selection, via FST and varLD tests. The principal component analysis revealed a sub-structure with a close connection between the two subpopulations. The averages of genomic relationships, inbreeding coefficients, and linkage disequilibrium at varying genomic distances were rather similar across them, suggesting non-accentuated differences in overall genomic diversity. Autozygosity islands revealed selection signatures common to both subpopulations at chromosomes 13 (63.77-65.25 Mb) and 14 (22.81-23.57 Mb), which are notably known regions affecting growth traits. Nevertheless, further autozygosity islands along with FST and varLD tests unravel particular sites with accentuated population subdivision at BTAs 7 and 18 overlapping with known QTL and candidate genes of reproductive performance, thermoregulation, and resistance to infectious diseases. Our findings indicate overall genomic similarity between Angus subpopulations, with noticeable signals of divergent selection in genomic regions associated with the adaptation in different environments.


Assuntos
Bovinos/genética , Genoma , Animais , Regulação da Temperatura Corporal/genética , Brasil , Cruzamento , Canadá , Bovinos/classificação , Resistência à Doença/genética , Marcadores Genéticos , Desequilíbrio de Ligação , Reprodução/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...