Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 10: 1280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231281

RESUMO

This study is based on one collaborative problem solving task from an international assessment: the Xandar task. It was developed and delivered by the Organization for Economic Co-operation and Development Program for International Student Assessment (OECD PISA) 2015. We have investigated the relationship of problem solving performance with invested time and number of actions in collaborative episodes for the four parts of the Xandar task. The parts require the respondent to collaboratively plan a process for problem solving, implement the process, reach a solution, and evaluate the solution (For a full description, see the Materials and Methods section, "Parts of the Xandar Task.") Examples of an action include posting to a chat log, accessing a shared resource, or conducting a search on a map tool. Actions taken in each part of the task were identified by PISA and recorded in the data set numerically. A confirmatory factor analysis (CFA) model looks at two types of relationship: at the level of latent variables (the factors) and at extra dependencies, which here are direct effects and correlated residuals (independent of the factors). The model, which is well-fitting, has three latent variables: actions (A), times (T), and level of performance (P). Evidence for the uni-dimensionality of performance level is also found in a separate analysis of the binary items. On the whole for the entire task, participants with more activities are less successful and faster, based on the United States data set employed in the analysis. By contrast, successful participants take more time. By task part, the model also investigates relationships between activities, time, and performance level within the parts. This was done because one can expect dependencies within parts of such a complex task. Results indicate some general and some specific relationships within the parts, see the full manuscript for more detail. We conclude with a discussion of what the investigated relationships may reveal. We also describe why such investigations may be important to consider when preparing students for improved skills in collaborative problem solving, considered a key aspect of successful 21st century skills in the workplace and in everyday life in many countries.

3.
J Appl Meas ; 10(3): 281-95, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19671990

RESUMO

Since architecture students studying design drawing are usually assessed qualitatively on the basis of their final products, the challenges and stages of their learning have remained masked. To clarify the challenges in design drawing, we have been using the BEAR Assessment System and Rasch family models to measure levels of understanding for individuals and groups, in order to correct pedagogical assumptions and tune teaching materials. This chapter discusses the analysis of 81 drawings created by architectural students to solve a space layout problem, collected and analyzed with digital pen-and-paper technology. The approach allows us to map developmental performance criteria and perceive achievement overlaps in learning domains assumed separate, and then re-conceptualize a three-part framework to represent learning in architectural drawing. Results and measurement evidence from the assessment and Rasch modeling are discussed.


Assuntos
Arquitetura , Gráficos por Computador , Educação a Distância , Estudos de Avaliação como Assunto , Internet , Modelos Teóricos , Algoritmos , Arquitetura/educação , Desenho de Equipamento , Humanos , Psicometria , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...