Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(19): 190201, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804937

RESUMO

The realistic interpretation of classical theory assumes that every classical system has well-defined properties, which may be unknown to the observer but are nevertheless part of reality and can, in principle, be revealed by measurements. Here we show that this interpretation can, in principle, be falsified if classical systems coexist with other types of physical systems. To make this point, we construct a toy theory that (i) includes classical theory as a subtheory and (ii) allows classical systems to be entangled with another type of system, called anticlassical. We show that our toy theory allows for the violation of Bell inequalities in two-party scenarios where one of the settings corresponds to a local measurement performed on a classical system alone. Building on this fact, we show that measurement outcomes in classical theory cannot, in general, be regarded as predetermined by the state of an underlying reality.

2.
Phys Rev E ; 107(1-1): 014203, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797937

RESUMO

We develop a rigorous theory of external influences on finite discrete dynamical systems, going beyond the perturbation paradigm, in that the external influence need not be a small contribution. Indeed, the covariance condition can be stated as follows: If we evolve the dynamical system for n time steps and then disturb it, then it is the same as first disturbing the system with the same influence and then letting the system evolve for n time steps. Applying the powerful machinery of resource theories, we develop a theory of covariant influences both when there is a purely deterministic evolution and when randomness is involved. Subsequently, we provide necessary and sufficient conditions for the transition between states under deterministic covariant influences and necessary conditions in the presence of stochastic covariant influences, predicting which transitions between states are forbidden. Our approach, for the first time, employs the framework of resource theories, borrowed from quantum information theory, to the study of finite discrete dynamical systems. The laws we articulate unify the behavior of different types of finite discrete dynamical systems, and their mathematical flavor makes them rigorous and checkable.

3.
Phys Rev Lett ; 126(9): 090401, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750177

RESUMO

Wave-particle duality is one of the basic features of quantum mechanics, giving rise to the use of complex numbers in describing states of quantum systems and their dynamics and interaction. Since the inception of quantum theory, it has been debated whether complex numbers are essential or whether an alternative consistent formulation is possible using real numbers only. Here, we attack this long-standing problem theoretically and experimentally, using the powerful tools of quantum resource theories. We show that, under reasonable assumptions, quantum states are easier to create and manipulate if they only have real elements. This gives an operational meaning to the resource theory of imaginarity. We identify and answer several important questions, which include the state-conversion problem for all qubit states and all pure states of any dimension and the approximate imaginarity distillation for all quantum states. As an application, we show that imaginarity plays a crucial role in state discrimination, that is, there exist real quantum states that can be perfectly distinguished via local operations and classical communication but that cannot be distinguished with any nonzero probability if one of the parties has no access to imaginarity. We confirm this phenomenon experimentally with linear optics, discriminating different two-photon quantum states by local projective measurements. Our results prove that complex numbers are an indispensable part of quantum mechanics.

4.
Phys Rev Lett ; 125(18): 180505, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196234

RESUMO

Unlike the entanglement of quantum states, very little is known about the entanglement of bipartite channels, called dynamical entanglement. Here we work with the partial transpose of a superchannel, and use it to define computable measures of dynamical entanglement, such as the negativity. We show that a version of it, the max-logarithmic negativity, represents the exact asymptotic dynamical entanglement cost. We discover a family of dynamical entanglement measures that provide necessary and sufficient conditions for bipartite channel simulation under local operations and classical communication and under operations with positive partial transpose.

5.
Proc Math Phys Eng Sci ; 476(2236): 20190832, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32398940

RESUMO

Quantum supermaps are a higher-order genera- lization of quantum maps, taking quantum maps to quantum maps. It is known that any completely positive and trace non-increasing (CPTNI) map can be performed as part of a quantum measurement. By providing an explicit counterexample we show that, instead, not every quantum supermap sending a quantum channel to a CPTNI map can be realized in a measurement on quantum channels. We find that the supermaps that can be implemented in this way are exactly those transforming quantum channels into CPTNI maps even when tensored with the identity supermap. We link this result to the fact that the principle of causality fails in the theory of quantum supermaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...