Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioscience ; 72(6): 521-537, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35677290

RESUMO

The invasive plant Alliaria petiolata (garlic mustard) has spread throughout forest understory and edge communities in much of North America, but its persistence, density, and impacts have varied across sites and time. Surveying the literature since 2008, we evaluated both previously proposed and new mechanisms for garlic mustard's invasion success and note how they interact and vary across ecological contexts. We analyzed how and where garlic mustard has been studied and found a lack of multisite and longitudinal studies, as well as regions that may be under- or overstudied, leading to poor representation for understanding and predicting future invasion dynamics. Inconsistencies in how sampling units are scaled and defined can also hamper our understanding of invasive species. We present new conceptual models for garlic mustard invasion from a macrosystems perspective, emphasizing the importance of synergies and feedbacks among mechanisms across spatial and temporal scales to produce variable ecological contexts.

2.
Ecol Evol ; 11(9): 3660-3671, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976765

RESUMO

Biodiversity is a complex, yet essential, concept for undergraduate students in ecology and other natural sciences to grasp. As beginner scientists, students must learn to recognize, describe, and interpret patterns of biodiversity across various spatial scales and understand their relationships with ecological processes and human influences. It is also increasingly important for undergraduate programs in ecology and related disciplines to provide students with experiences working with large ecological datasets to develop students' data science skills and their ability to consider how ecological processes that operate at broader spatial scales (macroscale) affect local ecosystems. To support the goals of improving student understanding of macroscale ecology and biodiversity at multiple spatial scales, we formed an interdisciplinary team that included grant personnel, scientists, and faculty from ecology and spatial sciences to design a flexible learning activity to teach macroscale biodiversity concepts using large datasets from the National Ecological Observatory Network (NEON). We piloted this learning activity in six courses enrolling a total of 109 students, ranging from midlevel ecology and GIS/remote sensing courses, to upper-level conservation biology. Using our classroom experiences and a pre/postassessment framework, we evaluated whether our learning activity resulted in increased student understanding of macroscale ecology and biodiversity concepts and increased familiarity with analysis techniques, software programs, and large spatio-ecological datasets. Overall, results suggest that our learning activity improved student understanding of biological diversity, biodiversity metrics, and patterns of biodiversity across several spatial scales. Participating faculty reflected on what went well and what would benefit from changes, and we offer suggestions for implementation of the learning activity based on this feedback. This learning activity introduced students to macroscale ecology and built student skills in working with big data (i.e., large datasets) and performing basic quantitative analyses, skills that are essential for the next generation of ecologists.

3.
BMC Res Notes ; 12(1): 818, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856898

RESUMO

OBJECTIVE: Parafilm M® is a moisture-resistant thermoplastic commonly used to seal Nematode Growth Media (NGM) agar plates on which the nematode Caenorhabditis elegans is cultured. This practice reduces media dehydration and microbial contamination. However, the effects on C. elegans individuals of placing this barrier between the external environment and the interior of the NGM plate are currently unknown. Our research aims to determine if this common practice engenders developmental changes, such as growth, that could subsequently and unintentionally alter experimental data. We compared the larval growth over 48 h of animals cultured on Parafilm-wrapped and unwrapped control NGM plates. RESULTS: Wrapping culture plates with Parafilm significantly accelerated and increased larval growth, with a 0.87 µm/h increase in growth rate (~ 6%) and a 37.90 µm increase in the change in growth (Δgrowth; ~ 5%) over 48 h. Therefore, C. elegans investigators should be aware that wrapping their experimental cultures with Parafilm may result in statistically detectable changes in worm growth and possibly other developmental processes.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Técnicas de Cultura/métodos , Ágar , Animais , Meios de Cultura , Larva/crescimento & desenvolvimento , Parafina
4.
PLoS One ; 13(4): e0192749, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29664905

RESUMO

Erythritol, a non-nutritive polyol, is the main component of the artificial sweetener Truvia®. Recent research has indicated that erythritol may have potential as an organic insecticide, given its harmful effects on several insects but apparent safety for mammals. However, for erythritol to have practical use as an insecticide in agricultural settings, it must have neutral to positive effects on crop plants and other non-target organisms. We examined the dose-dependent effects of erythritol (0, 5, 50, 500, 1000, and 2000 mM) on corn (Zea mays) and tomato (Solanum lycopersicum) seedling growth and seed germination. Erythritol caused significant reductions in both belowground (root) and aboveground (shoot) dry weight at and above the typical minimum insecticidal dose (500 mM erythritol) in tomato plants, but not in corn plants. Both corn and tomato seed germination was inhibited by erythritol but the tomato seeds appeared to be more sensitive, responding at concentrations as low as 50 mM erythritol (in contrast to a minimum damaging dose of 1000 mM erythritol for corn seeds). Our results suggest erythritol may have damaging non-target effects on certain plant crops when used daily at the typical doses needed to kill insect pests. Furthermore, if erythritol's damaging effects extend to certain weed species, it also may have potential as an organic herbicide.


Assuntos
Eritritol/administração & dosagem , Inseticidas/administração & dosagem , Solanum lycopersicum/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritritol/toxicidade , Germinação/efeitos dos fármacos , Inseticidas/toxicidade , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...