Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(41): 22830-40, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25242373

RESUMO

Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag(+) ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O2 cells, these cells are assembled and characterized. Li-O2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O2 cells.

2.
Phys Chem Chem Phys ; 16(2): 743-52, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24270502

RESUMO

New materials with high intercalation capacity are needed for cathodic materials in order to overcome small capacities at high discharge rates in Li-ion batteries. High intercalation capacities have been reported in the experimental setup using iron phthalocyanine (FePc) as cathodic material; however the real intercalation capacity and the chemistry occurring during the intercalation process are still being debated. In this work we analyze the intercalation of Li atoms in FePc periodic structures using density functional theory including a semi-empirical approach to represent van der Waals (vdW) forces. Within this approach we find intercalation capacities of about 20 Li atoms per FePc molecule at a discharge voltage of ~0.5 V (with respect to Li/Li(+)), and up to 37 Li atoms at lower voltages. The intercalation process is driven mainly by electrostatic interactions between positively charged Li ions and negatively charged FePc molecules, with vdW interactions playing an essential role in reaching the high number of intercalated Li atoms. The reduction of the central Fe atom leading to charges evolving from +1.2 to -0.2 is responsible for the high intercalation voltage; however the further reduction contributions of N, C, and even H atoms make FePc a suitable cathode for Li-ion battery applications.

3.
J Phys Chem B ; 113(14): 4708-17, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19275199

RESUMO

Physisorption of molecular hydrogen based on neutral and negatively charged aromatic molecular systems has been evaluated using ab initio calculations to estimate the binding energy, DeltaH, and DeltaG at 298 ( approximately 77 bar) and 77 K (45 bar) in order to compare calculated results with experimental measurements of hydrogen adsorption. The molecular systems used in this study were corannulene (C(20)H(10)), dicyclopenta[def,jkl]triphenylene (C(20)H(10)), 5,8-dioxo-5,8-dihydroindeno[2,1-c]fluorene (C(20)H(10)O(2)), 6-hexyl-5,8-dioxo-5,8-dihydroindeno[2,1-c]fluorene (C(26)H(22)O(2)), coronene (C(24)H(12)), dilithium phthalocyanine (Li(2)Pc, C(32)H(16)Li(2)N(8)), tetrabutylammonium lithium phthalocyanine (TBA-LiPc, C(48)H(52)LiN(9)), and tetramethylammonium lithium phthalocyanine (TMA-LiPc, C(36)H(28)LiN(9)). It was found (a) that the calculated term that corrects 0 K electronic energies to give Gibbs energies (thermal correction to Gibbs energy, TCGE) serves as a good approximation of the adsorbent binding energy required in order for a physisorption process to be thermodynamically allowed and (b) that the binding energy for neutral aromatic molecules varies as a function of curvature (e.g., corannulene versus coronene) or if electron-withdrawing or -donating groups are part of the adsorbent. A negatively charged aromatic ring, the lithium phthalocyanine complex anion, [LiPc](-), introduces charge-induced dipole interactions into the adsorption process, resulting in a doubling of the binding energy of Li(2)Pc relative to corannulene. Experimental hydrogen adsorption results for Li(2)Pc, which are consistent with MD simulation results using chi-Li(2)Pc to simulate the adsorbent, suggest that only one side of the phthalocyanine ring is used in the adsorption process. The introduction of a tetrabutylammonium cation as a replacement for one lithium ion in Li(2)Pc has the effect of increasing the number of hydrogen molecules adsorbed from 10 (3.80 wt %) for Li(2)Pc to 24 (5.93 wt %) at 77 K and 45 bar, suggesting that both sides of the phthalocyanine ring are available for hydrogen adsorption. MD simulations of layered tetramethylammonium lithium phthalocyanine molecular systems illustrate that doubling the wt % H(2) adsorbed is possible via such a system. Ab initio calculations also suggest that layered or sandwich structures can result in significant reductions in the pressure required for hydrogen adsorption.

4.
J Phys Chem B ; 110(45): 22532-41, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17091998

RESUMO

Density functional theory and classical molecular dynamics simulations are used to investigate the prospect of lithium-doped corannulene as adsorbent material for H(2) gas. Potential energy surface scans at the level of B3LYP/6-311G(d,p) show an enhanced interaction of molecular hydrogen with lithium-atom-doped corannulene complexes with respect to that found in undoped corannulene. MP2(FC)/6-31G(d,p) optimizations of 4H(2)-(Li(2)-C(20)H(10)) yield H(2) binding energies of -1.48 kcal/mol for the H(2)-Li interaction and -0.92 kcal/mol for the H(2)-C interaction, whereas values of -0.94 and -0.83 kcal/mol were reported (J. Phys. Chem. B 2006, 110, 7688-7694) for physisorption of H(2) on the concave and the convex side of corannulene using MP2(full)/6-31G(d), respectively. Classical molecular dynamics simulations predict hydrogen uptakes in Li-doped corannulene assemblies that are significantly enhanced with respect to that found in undoped molecules, and the hydrogen uptake ability is dependent on the concentration of lithium dopant. For the Li(6)-C(20)H(10) complex, a hydrogen uptake of 4.58 wt % at 300 K and 230 bar is obtained when the adsorbent molecules are arranged in stack configurations separated by 6.5 A, and with interlayer distances of 10 A, hydrogen uptake reaches 6.5 wt % at 300 K and 215 bar.

5.
J Phys Chem B ; 110(15): 7688-94, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16610862

RESUMO

Molecular simulations for hydrogen physisorption with corannulene molecules arranged according to their crystal structure result in good agreement with the weight-percent hydrogen stored as determined experimentally employing a 3-g sample of highly crystalline corannulene at ambient temperatures and 72 bar of pressure. Calculated enthalpies of adsorption for corannulene/hydrogen molecular systems obtained from ab initio calculations which take into account electron correlation via second-order Möller-Plesset perturbation theory are in good agreement with literature experimental enthalpies of adsorption for activated carbons interacting with molecular hydrogen. Ab initio results also show that corannulene molecules arranged in a sandwich structure are important for approximately doubling the binding energy of corannulene interacting with molecular hydrogen through a cooperative interaction. To test the effects of finite temperatures and pressures, stack arrays were used as input for molecular dynamics simulations and indicate that physisorption mechanisms including van der Waals forces and dipole-induced dipole interactions may yield enhanced adsorption capacity in relation to other carbon-based materials. These results will be instrumental in identifying interlayer separations of an array of corannulene or related molecules that may provide a high weight percent of physisorbed hydrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...