Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Monit Assess ; 90(1-3): 121-33, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15887368

RESUMO

Brazil officially joined the International Long Term Ecological Research (ILTER) network in January 2000, when nine research sites were created and funded by the Brazilian Council for Science and Technology (CNPq). Two-years later some positive signs already emerge of the scientific, social and political achievements of the Brazilian LTER program. We discuss examples of how ecosystem and biodiversity information gathered within a long-term research approach are currently subsidizing decision-making as regards biodiversity conservation and watershed management at local and regional scales. Success in this respect has often been related to satisfactory communication between scientists, private companies, government and local citizens. Environmental education programs in the LTER sites are playing an important role in social and political integration. Most examples of integration of ecological research to decision-making in Brazil derive from case studies at local or regional scale. Despite the predominance of a bottom-up integrative pathway (from case studies to models; from local to national scale), some top-down initiatives are also in order, such as the construction of a model to estimate the inpact of different macroeconomic policies and growth trajectories on land use. We believe science and society in Brazil will benefit of the coexistence of bottom-up and top-down integrative approaches.


Assuntos
Biodiversidade , Tomada de Decisões , Ecossistema , Monitoramento Ambiental , Política Pública , Brasil , Análise Custo-Benefício , Exposição Ambiental/prevenção & controle , Saúde Ambiental , Geografia , Humanos , Gestão de Riscos
3.
Tree Physiol ; 19(10): 635-644, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12651319

RESUMO

Crassulacean acid metabolism (CAM) plants are dependent on the organic acids that accumulate overnight in the vacuoles as a source of CO(2) during the daylight deacidification period, when stomata are closed and high irradiances generally prevail. We performed an integrative analysis of diurnal changes in gas exchange, chlorophyll fluorescence parameters and organic acid decarboxylation to understand the adjustments in photochemical and non-photochemical processes during the different CAM phases in Clusia hilariana Schlecht., a dominant tree species in the sandy coastal plains of southeastern Brazil. A linear relationship was obtained between the quantum yields of photochemical and non-photochemical quenching, irrespective of the CAM phase and prevailing irradiance. Degradation of malic and citric acids during the midday stomatal closure period could lead to potential CO(2) fixation rates of 23 &mgr;mol m(-2) s(-1), whereas CO(2) losses, measured as CO(2) evolution, corresponded to about 3% of this value. Thus, decarboxylation of malate and citrate provided high internal CO(2) concentrations during phase III of CAM, even though the stomata were closed, allowing optimal utilization of light energy, as indicated by the non-saturating electron transport rates (ETR) in the light response curves, with highest rates of ETR occurring at midday in the diurnal curves. At the transition from phase III to IV of CAM, depletion of internal CO(2) sources and low stomatal conductances, which restricted the supply of exogenous CO(2), reduced the demand for photochemical energy to drive carbon assimilation. This was compensated by increases in thermal energy dissipation as indicated by higher rates of non-photochemical quenching, while high irradiances still prevailed. Shifts in the CAM phases and changes in protective thermal dissipation potential allowed C. hilariana to match changes in PPFD patterns for leaves of different orientations. Evidence that most of the decline in photochemical efficiency was probably related to the fast-relaxing component of non-photochemical quenching is provided by the high values of the quantum yield of photosystem II after 20 min of relaxation in darkness, and an almost complete recovery after sunset. These adjustments in photosynthetic machinery minimized the danger of photo-inhibition in C. hilariana, which is commonly found in fully exposed habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...