Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
R. bras. Ci. avíc. ; 18(1): 193-196, jan.-mar. 2016. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-341422

RESUMO

This study aimed at evaluating the levels of moisture, protein, water to protein ratio, and water absorption during chilling of chicken giblets (heart, liver, and gizzard) to set legal limits of water absorption during this process. The survey was conducted in the southern Brazil, the largest broiler-producing region of this country. Giblets (heart, liver, and gizzard) were collected fresh from the processing line after evisceration and at the exit of the chiller after the immersion process from two processing plants. One of the plants (PP1) processes small chickens (1,100g live weight) and PP2 processes chickens with 2,800g live weight. In total, 448 samples were collected. Laboratory tests were performed in duplicate for each parameter measured. The results show that moisture levels of fresh giblets were higher in the gizzard, followed by the liver and the heart, whereas in chilled giblets, the gizzard still maintained the highest moisture level, but was followed by the heart and then the liver. Both in fresh and chilled samples, the liver presented the highest protein content, followed by the gizzard and the heart. Water to protein ratios were higher in chilled than in fresh samples, and was highest in the heart, followed by the gizzard and the liver. After immersion in the chiller, the heart presented the highest water absorption rate (6.59%), which was significantly higher compared with those of the liver (4.16%) and the gizzard (4.51%). Considering that the water absorption rates obtained both in fresh and chilled chicken giblets were below 8.00%, the following upper limits of water absorption are suggested for chicken giblet processing in Brazil: 7.0% for the heart, and 5.0% for the gizzard and the liver.(AU)


Assuntos
Animais , Ingestão de Líquidos/fisiologia , Galinhas/metabolismo , Galinhas/fisiologia , Umidade
2.
Rev. bras. ciênc. avic ; 18(1): 193-196, jan.-mar. 2016. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1490247

RESUMO

This study aimed at evaluating the levels of moisture, protein, water to protein ratio, and water absorption during chilling of chicken giblets (heart, liver, and gizzard) to set legal limits of water absorption during this process. The survey was conducted in the southern Brazil, the largest broiler-producing region of this country. Giblets (heart, liver, and gizzard) were collected fresh from the processing line after evisceration and at the exit of the chiller after the immersion process from two processing plants. One of the plants (PP1) processes small chickens (1,100g live weight) and PP2 processes chickens with 2,800g live weight. In total, 448 samples were collected. Laboratory tests were performed in duplicate for each parameter measured. The results show that moisture levels of fresh giblets were higher in the gizzard, followed by the liver and the heart, whereas in chilled giblets, the gizzard still maintained the highest moisture level, but was followed by the heart and then the liver. Both in fresh and chilled samples, the liver presented the highest protein content, followed by the gizzard and the heart. Water to protein ratios were higher in chilled than in fresh samples, and was highest in the heart, followed by the gizzard and the liver. After immersion in the chiller, the heart presented the highest water absorption rate (6.59%), which was significantly higher compared with those of the liver (4.16%) and the gizzard (4.51%). Considering that the water absorption rates obtained both in fresh and chilled chicken giblets were below 8.00%, the following upper limits of water absorption are suggested for chicken giblet processing in Brazil: 7.0% for the heart, and 5.0% for the gizzard and the liver.


Assuntos
Animais , Galinhas/fisiologia , Galinhas/metabolismo , Ingestão de Líquidos/fisiologia , Umidade
3.
Water Sci Technol ; 60(4): 1025-31, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19700841

RESUMO

This paper analyses variations in the quali-quantitative characterization of winery wastewater, and the behavior of the treatment of these effluents. The wastewater produced is sent to two disposition systems: Point A receives the wastewater from the production area whereas Point B receives the wastewater from the area where the washing of bottles takes place. Two Aerated Submerged Biofilter (ASB) reactors (with oyster shells as support material) were built at lab scale to promote the treatment of the winery effluent. Water usage and effluent production values of the 2008 harvest season indicate that grape processing accounted for 30% of the total water usage. The median value found for the effluent at Point A was 8,260 mg COD L(-1) and at Point B 358 mg COD L(-1). The average C/N/P ratio found at Point A was 100/0.29/0.28 during the harvest and 100/0.27/0.25 during the non harvest. For ASB 1 the COD removal efficiency ranged from 56% to 90%, with the removed organic load ranging from 1.5 kg COD m(-3) d(-1) to 2.7 kg COD m(-3) d(-1), respectively. For ASB 2 the COD removal efficiency ranged from 63% to 82%, with the removed organic load ranging from 1.8 kg COD m(-3) d(-1) to 1.7 kg COD m(-3) d(-1), respectively.


Assuntos
Resíduos Industriais/análise , Eliminação de Resíduos Líquidos , Purificação da Água/métodos , Vinho , Animais , Biodegradação Ambiental , Reatores Biológicos , Brasil , Filtração , Ostreidae , Oxigênio/isolamento & purificação , Estações do Ano , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA