Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 54(80): 11226-11243, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30159564

RESUMO

Experimental studies have noted the often surprising and unpredictable effect of ionic liquids as solvents on reaction kinetics for radical polymerisation. We theoretically investigate the energetic and structural effects of ionic liquids, both protic and aprotic, on radical stability, presenting stabilisation of the radical by the ionic liquid by up to -78.0 kJ mol-1. Kinetic data relating to propagating systems for several industrially viable monomers indicate that propagation rates can be increased or decreased (by up to 6 orders of magnitude) depending on the monomer and ionic liquid combination. The interplay of activation entropy and activation enthalpy, much of which depends on hydrogen bonding between the solvent and reactants, play a crucial role in controlling reaction kinetics. It is concluded that the use of cheaper protic ionic liquids as solvents may be viable for improved kinetic control over radical reactions.

2.
Chem Rev ; 117(10): 6696-6754, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28139908

RESUMO

The accurate prediction of physicochemical properties of condensed systems is a longstanding goal of theoretical (quantum) chemistry. Ionic liquids comprising entirely of ions provide a unique challenge in this respect due to the diverse chemical nature of available ions and the complex interplay of intermolecular interactions among them, thus resulting in the wide variability of physicochemical properties, such as thermodynamic, transport, and spectroscopic properties. It is well understood that intermolecular forces are directly linked to physicochemical properties of condensed systems, and therefore, an understanding of this relationship would greatly aid in the design and synthesis of functionalized materials with tailored properties for an application at hand. This review aims to give an overview of how electronic structure properties obtained from quantum chemical methods such as interaction/binding energy and its fundamental components, dipole moment, polarizability, and orbital energies, can help shed light on the energetic, physical, and spectroscopic properties of semi-Coulomb systems such as ionic liquids. Particular emphasis is given to the prediction of their thermodynamic, transport, spectroscopic, and solubilizing properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...