Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38496448

RESUMO

Background: Lung cancer is the leading cause of cancer death in the world. While cigarette smoking is the major preventable factor for cancers in general and lung cancer in particular, old age is also a major risk factor. Aging-related chronic, low-level inflammation, termed inflammaging, has been widely documented; however, it remains unclear how inflammaging contributes to increased lung cancer incidence. Aim: To establish connections between aging-associated changes in the lungs and cancer risk. Methods: We analyzed public databases of gene expression for normal and cancerous human lungs and used mouse models to understand which changes were dependent on inflammation, as well as to assess the impact on oncogenesis. Results: Analyses of GTEx and TCGA databases comparing gene expression profiles from normal lungs, lung adenocarcinoma, lung squamous cell carcinoma of subjects across age groups revealed upregulated pathways such as inflammatory response, TNFA signaling via NFκB, and interferon-gamma response. Similar pathways were identified comparing the gene expression profiles of young and old mouse lungs. Transgenic expression of alpha 1 antitrypsin (AAT) partially reverses increases in markers of aging-associated inflammation and immune deregulation. Using an orthotopic model of lung cancer using cells derived from EML4-ALK fusion-induced adenomas, we demonstrated an increased tumor outgrowth in lungs of old mice while NLRP3 knockout in old mice decreased tumor volumes, suggesting that inflammation contributes to increased lung cancer development in aging organisms. Conclusions: These studies reveal how expression of an anti-inflammatory mediator (AAT) can reduce some but not all aging-associated changes in mRNA and protein expression in the lungs. We further show that aging is associated with increased tumor outgrowth in the lungs, which may relate to an increased inflammatory microenvironment.

2.
Oncoimmunology ; 7(6): e1438105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872579

RESUMO

Adenoviral vectors expressing Cre recombinase are commonly used to initiate tumor formation in murine lung cancer models. While these vectors are designed to target genetic recombination to lung epithelial cells, adenoviruses can infect additional cell types that potentially influence tumor development. Our goal was to explore the consequences of adenoviral-mediated alveolar macrophage (AM) transduction in a Kras-initiated lung tumor model. As expected, treatment of animals harboring the KrasLSL-G12D allele and an inducible green fluorescence protein (GFP) tracking allele with an adenoviral vector expressing Cre recombinase under the control of the cytomegalovirus (CMV) promoter (Ad5-CMV-Cre), caused GFP-positive lung adenocarcinomas. Surprisingly, however, up to 70% of the total GFP+ cells were AM, and GFP+ AM could be detected 6 months after tumor initiation, and transduced AM demonstrated Kras activation and increased proliferation. In contrast, recombination was not detected in other immune cell populations and AM recombination could be eliminated by tumor initiation with an adenovirus expressing Cre recombinase under the control of the surfactant protein C (SPC) promoter. In addition, AM isolated from KrasLSL-G12D animals and transduced by Ad5-CMV-Cre ex vivo displayed prolonged survival in vitro and increased the growth of murine lung adenocarcinoma CMT/167 cells when co-injected in an orthotopic flank model. Given the importance of the immune system in tumor development and progression, inadvertent AM transduction by Ad5-CMV-Cre merits careful consideration during lung cancer model selection particularly if studies evaluating the tumor-immune interactions are planned.

3.
Clin Cancer Res ; 23(6): 1531-1541, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27663586

RESUMO

Purpose: The emergence of EGFR inhibitors such as gefitinib, erlotinib, and osimertinib has provided novel treatment opportunities in EGFR-driven non-small cell lung cancer (NSCLC). However, most patients with EGFR-driven cancers treated with these inhibitors eventually relapse. Recent efforts have identified the canonical Wnt pathway as a mechanism of protection from EGFR inhibition and that inhibiting tankyrase, a key player in this pathway, is a potential therapeutic strategy for the treatment of EGFR-driven tumors.Experimental Design: We performed a preclinical evaluation of tankyrase inhibitor AZ1366 in combination with multiple EGFR-inhibitors across NSCLC lines, characterizing its antitumor activity, impingement on canonical Wnt signaling, and effects on gene expression. We performed pharmacokinetic and pharmacodynamic profiling of AZ1366 in mice and evaluated its therapeutic activity in an orthotopic NSCLC model.Results: In combination with EGFR inhibitors, AZ1366 synergistically suppressed proliferation of multiple NSCLC lines and amplified global transcriptional changes brought about by EGFR inhibition. Its ability to work synergistically with EGFR inhibition coincided with its ability to modulate the canonical Wnt pathway. Pharmacokinetic and pharmacodynamic profiling of AZ1366-treated orthotopic tumors demonstrated clinically relevant serum drug levels and intratumoral target inhibition. Finally, coadministration of an EGFR inhibitor and AZ1366 provided better tumor control and improved survival for Wnt-responsive lung cancers in an orthotopic mouse model.Conclusions: Tankyrase inhibition is a potent route of tumor control in EGFR-dependent NSCLC with confirmed dependence on canonical Wnt signaling. These data strongly support further evaluation of tankyrase inhibition as a cotreatment strategy with EGFR inhibition in an identifiable subset of EGFR-driven NSCLC. Clin Cancer Res; 23(6); 1531-41. ©2016 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Receptores ErbB/antagonistas & inibidores , Tanquirases/antagonistas & inibidores , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Gefitinibe , Humanos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Quinazolinas/administração & dosagem , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Signal ; 9(450): rs12, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27811184

RESUMO

Patients with lung cancers harboring anaplastic lymphoma kinase (ALK) gene fusions benefit from treatment with ALK inhibitors, but acquired resistance inevitably arises. A better understanding of proximal ALK signaling mechanisms may identify sensitizers to ALK inhibitors that disrupt the balance between prosurvival and proapoptotic effector signals. Using affinity purification coupled with mass spectrometry in an ALK fusion lung cancer cell line (H3122), we generated an ALK signaling network and investigated signaling activity using tyrosine phosphoproteomics. We identified a network of 464 proteins composed of subnetworks with differential response to ALK inhibitors. A small hairpin RNA screen targeting 407 proteins in this network revealed 64 and 9 proteins that when knocked down sensitized cells to crizotinib and alectinib, respectively. Among these, knocking down fibroblast growth factor receptor substrate 2 (FRS2) or coiled-coil and C2 domain-containing protein 1A (CC2D1A), both scaffolding proteins, sensitized multiple ALK fusion cell lines to the ALK inhibitors crizotinib and alectinib. Collectively, our data set provides a resource that enhances our understanding of signaling and drug resistance networks consequent to ALK fusions and identifies potential targets to improve the efficacy of ALK inhibitors in patients.


Assuntos
Carbazóis/farmacologia , Proteínas de Ciclo Celular , Neoplasias Pulmonares , Proteínas Associadas aos Microtúbulos , Piperidinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Interferência de RNA , Receptores Proteína Tirosina Quinases , Serina Endopeptidases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinase do Linfoma Anaplásico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Crizotinibe , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
5.
Cell Res ; 25(3): 269-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25547118

RESUMO

Discovery of individualized therapies to address resistance to tyrosine kinase inhibitors (TKIs) has been hampered by the inability to test drug combinations on patient samples before and after TKI resistance. A recent study published in Science by Crystal et al. describes a methodology for pharmacological screening using a panel of 76 targeted agents and cell lines made directly from patient biopsies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Modelagem Computacional Específica para o Paciente , Inibidores de Proteínas Quinases/uso terapêutico , Humanos
6.
Nature ; 509(7500): 381-4, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24553139

RESUMO

Hepatitis C virus (HCV) is a significant public health concern with approximately 160 million people infected worldwide. HCV infection often results in chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. No vaccine is available and current therapies are effective against some, but not all, genotypes. HCV is an enveloped virus with two surface glycoproteins (E1 and E2). E2 binds to the host cell through interactions with scavenger receptor class B type I (SR-BI) and CD81, and serves as a target for neutralizing antibodies. Little is known about the molecular mechanism that mediates cell entry and membrane fusion, although E2 is predicted to be a class II viral fusion protein. Here we describe the structure of the E2 core domain in complex with an antigen-binding fragment (Fab) at 2.4 Å resolution. The E2 core has a compact, globular domain structure, consisting mostly of ß-strands and random coil with two small α-helices. The strands are arranged in two, perpendicular sheets (A and B), which are held together by an extensive hydrophobic core and disulphide bonds. Sheet A has an IgG-like fold that is commonly found in viral and cellular proteins, whereas sheet B represents a novel fold. Solution-based studies demonstrate that the full-length E2 ectodomain has a similar globular architecture and does not undergo significant conformational or oligomeric rearrangements on exposure to low pH. Thus, the IgG-like fold is the only feature that E2 shares with class II membrane fusion proteins. These results provide unprecedented insights into HCV entry and will assist in developing an HCV vaccine and new inhibitors.


Assuntos
Hepacivirus/química , Proteínas do Envelope Viral/química , Cristalografia por Raios X , Dissulfetos/química , Hepacivirus/fisiologia , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão , Vacinas contra Hepatite Viral , Internalização do Vírus
7.
Cancer Res ; 72(16): 4154-64, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22738915

RESUMO

Lung cancer is the leading cause of death worldwide. Adenocarcinomas, the most common histologic subtype of non-small cell lung cancer (NSCLC), are frequently associated with activating mutations in the epidermal growth factor receptor (EGFR) gene. Although these patients often respond clinically to the EGFR tyrosine kinase inhibitors erlotinib and gefitinib, relapse inevitably occurs, suggesting the development of escape mechanisms that promote cell survival. Using a loss-of-function, whole genome short hairpin RNA (shRNA) screen, we identified that the canonical Wnt pathway contributes to the maintenance of NSCLC cells during EGFR inhibition, particularly the poly-ADP-ribosylating enzymes tankyrase 1 and 2 that positively regulate canonical Wnt signaling. Inhibition of tankyrase and various other components of the Wnt pathway with shRNAs or small molecules significantly increased the efficacy of EGFR inhibitors both in vitro and in vivo. Our findings therefore reveal a critical role for tankyrase and the canonical Wnt pathway in maintaining lung cancer cells during EGFR inhibition. Targeting the Wnt-tankyrase-ß-catenin pathway together with EGFR inhibition may improve clinical outcome in patients with NSCLC.


Assuntos
Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Tanquirases/metabolismo , Proteínas Wnt/metabolismo , Adenocarcinoma Bronquioloalveolar/tratamento farmacológico , Adenocarcinoma Bronquioloalveolar/enzimologia , Adenocarcinoma Bronquioloalveolar/genética , Adenocarcinoma Bronquioloalveolar/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Feminino , Gefitinibe , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Quinazolinas/farmacologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Virol ; 83(21): 11078-89, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19710151

RESUMO

More than 120 million people worldwide are chronically infected with hepatitis C virus (HCV), making HCV infection the leading cause of liver transplantation in developed countries. Treatment is limited, and efficacy depends upon the infecting strain and the initial viral load. The HCV envelope glycoproteins (E1 and E2) are involved in receptor binding, virus-cell fusion, and entry into the host cell. HCV infection proceeds by endosomal acidification, suggesting that fusion of the viral envelope with cellular membranes is a pH-triggered event. E2 consists of an amino-terminal ectodomain, an amphipathic helix that forms a stem region, and a carboxy-terminal membrane-associating segment. We have devised a novel expression system for the production of a secreted form of E2 ectodomain (eE2) from mammalian cells and performed a comprehensive biochemical and biophysical characterization. eE2 is properly folded, as determined by binding to human CD81, blocking of infection of cell culture-derived HCV, and recognition by antibodies from patients chronically infected with different genotypes of HCV. The glycosylation pattern, number of disulfide bonds, oligomerization state, and secondary structure of eE2 have been characterized using mass spectrometry, size exclusion chromatography, circular dichroism, and analytical ultracentrifugation. These results advance the understanding of E2 and may assist in the design of an HCV vaccine and entry inhibitor.


Assuntos
Hepacivirus/metabolismo , Hepatite C/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Glicosilação , Humanos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...