Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 33(22): 8635-8648, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34853491

RESUMO

We have investigated the transformations of colloidal Pd-Cu and Pt-Cu bimetallic alloy nanocrystals (NCs) supported on γ-Al2O3 when exposed to a sequence of oxidizing and then reducing atmospheres, in both cases at high temperature (350 °C). A combination of in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray absorption spectroscopy was employed to probe the NC surface chemistry and structural/compositional variations in response to the different test conditions. Depending on the type of noble metal in the bimetallic NCs (whether Pd or Pt), different outcomes were observed. The oxidizing treatment on Pd-Cu NCs led to the formation of a PdCuO mixed oxide and PdO along with a minor fraction of CuO x species on the support. The same treatment on Pt-Cu NCs caused a complete dealloying between Pt and Cu, forming separate Pt NCs with a minor fraction of PtO NCs and CuO x species, the latter finely dispersed on the support. The reducing treatment that followed the oxidizing treatment largely restored the Pd-Cu alloy NCs, although with a residual fraction of CuO x species remaining. Similarly, Pt-Cu NCs were partially restored but with a large fraction of CuO x species still located on the support. Our results indicate that the noble metal present in the bimetallic Cu-based alloy NCs has a strong influence on the dealloying/migrations/realloying processes occurring under typical heterogeneous catalytic reactions, elucidating the structural/compositional variations of these NCs depending on the atmospheres to which they are exposed.

2.
ACS Sustain Chem Eng ; 9(46): 15484-15495, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34840919

RESUMO

Sustainable coatings for metal food packaging were prepared from ZnO nanoparticles (obtained by the thermal decomposition of zinc acetate) and a naturally occurring polyhydroxylated fatty acid named aleuritic (or 9,10,16-trihydroxyhexadecanoic) acid. Both components reacted, originating under specific conditions zinc polyaleuritate ionomers. The polymerization of aleuritic acid into polyaleuritate by a solvent-free, melt polycondensation reaction was investigated at different times (15, 30, 45, and 60 min), temperatures (140, 160, 180, and 200 °C), and proportions of zinc oxide and aleuritic acid (0:100, 5:95, 10:90, and 50:50, w/w). Kinetic rate constants calculated by infrared spectroscopy decreased with the amount of Zn due to the consumption of reactive carboxyl groups, while the activation energy of the polymerization decreased as a consequence of the catalyst effect of the metal. The adhesion and hardness of coatings were determined from scratch tests, obtaining values similar to robust polymers with high adherence. Water contact angles were typical of hydrophobic materials with values ≥94°. Both mechanical properties and wettability were better than those of bisphenol A (BPA)-based resins and most likely are related to the low migration values determined using a hydrophilic food simulant. The presence of zinc provided a certain degree of antibacterial properties. The performance of the coatings against corrosion was studied by electrochemical impedance spectroscopy at different immersion times in an aqueous solution of NaCl. Considering the features of these biobased lacquers, they can be potential materials for bisphenol A-free metal packaging.

3.
Nanomaterials (Basel) ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204296

RESUMO

Grouping approaches of nanomaterials have the potential to facilitate high throughput and cost effective nanomaterial screening. However, an effective grouping of nanomaterials hinges on the application of suitable physicochemical descriptors to identify similarities. To address the problem, we developed an integrated testing approach coupling acellular and cellular phases, to study the full life cycle of ingested silver nanoparticles (NPs) and silver salts in the oro-gastrointestinal (OGI) tract including their impact on cellular uptake and integrity. This approach enables the derivation of exposure-dependent physical descriptors (EDPDs) upon biotransformation of undigested nanoparticles, digested nanoparticles and digested silver salts. These descriptors are identified in: size, crystallinity, chemistry of the core material, dissolution, high and low molecular weight Ag-biomolecule soluble complexes, and are compared in terms of similarities in a grouping hypothesis. Experimental results indicate that digested silver nanoparticles are neither similar to pristine nanoparticles nor completely similar to digested silver salts, due to the presence of different chemical nanoforms (silver and silver chloride nanocrystals), which were characterized in terms of their interactions with the digestive matrices. Interestingly, the cellular responses observed in the cellular phase of the integrated assay (uptake and inflammation) are also similar for the digested samples, clearly indicating a possible role of the soluble fraction of silver complexes. This study highlights the importance of quantifying exposure-related physical descriptors to advance grouping of NPs based on structural similarities.

4.
Nanomaterials (Basel) ; 10(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878343

RESUMO

Exploitation of engineered nanomaterials with unique properties has been dynamically growing in numerous fields, including the agricultural sector. Due to the increasing resistance of phytopathogenic microbes, human control over various plant pathogens in crop production is a big challenge and requires the development of novel antimicrobial materials. Photocatalytic active nanomaterials could offer an alternative solution to suppress the plant pathogens. In this work, titanium dioxide nanoparticles (TiO2 NPs) with high photocatalytic activity were synthesized by hydrothermal post-treatment of amorphous titania at different temperatures (250 °C or 310 °C) without using any additives or doping agents. The obtained samples were investigated through X-ray diffraction, N2-sorption measurements, diffuse reflectance UV-Vis spectroscopy, transmission electron microscopy, electron paramagnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. The applied hydrothermal treatment led to the formation of TiO2 nanocrystallites with a predominant anatase crystal phase, with increasing crystallinity and crystallite size by prolonging treatment time. The photocatalytic activity of the TiO2 NPs was tested for the photo-degradation of phenol and applied for the inactivation of various plant pathogens such as Erwinia amylovora, Xanthomonas arboricola pv. juglandis, Pseudomonas syringae pv. tomato and Allhorizobium vitis. The studied bacteria showed different susceptibilities; their living cell numbers were quickly and remarkably reduced by UV-A-irradiated TiO2 NPs. The effectiveness of the most active sample prepared at 310 °C was much higher than that of commercial P25 TiO2. We found that fine-tuning of the structural properties by modulating the time and temperature of the hydrothermal treatment influenced the photocatalytic properties of the TiO2 NPs considerably. This work provides valuable information to the development of TiO2-based antimicrobial photocatalysts.

5.
Mater Des ; 192: 108742, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32394995

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive types of brain cancer, characterized by rapid progression, resistance to treatments, and low survival rates; the development of a targeted treatment for this disease is still today an unattained objective. Among the different strategies developed in the latest few years for the targeted delivery of nanotherapeutics, homotypic membrane-membrane recognition is one of the most promising and efficient. In this work, we present an innovative drug-loaded nanocarrier with improved targeting properties based on the homotypic recognition of GBM cells. The developed nanoplatform consists of boron nitride nanotubes (BNNTs) loaded with doxorubicin (Dox) and coated with cell membranes (CM) extracted from GBM cells (Dox-CM-BNNTs). We demonstrated as Dox-CM-BNNTs are able to specifically target and kill GBM cells in vitro, leaving unaffected healthy brain cells, upon successful crossing an in vitro blood-brain barrier model. The excellent targeting performances of the nanoplatform can be ascribed to the protein component of the membrane coating, and proteomic analysis of differently expressed membrane proteins present on the CM of GBM cells and of healthy astrocytes allowed the identification of potential candidates involved in the process of homotypic cancer cell recognition.

6.
ChemSusChem ; 13(6): 1593-1602, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31647201

RESUMO

Lithium-sulfur batteries are the most promising candidates for next-generation energy storage devices owing to their high theoretical specific capacity of 1675 mAh g-1 and high theoretical energy density of approximately 3500 Wh kg-1 . However, the lack of cathode active materials with appropriate electrical conductivities and stability coupled with an inexpensive and industrially compatible production process has so far hindered the development of practical devices. Here, a facile preparation pathway is reported for the production of a sulfur-carbon composite active material by drying a mixture of highly conductive few-layer graphene (FLG) flakes (produced by exploiting an innovative wet jet milling process with a yield of ≈100 % and production capability of ≈23.5 g h-1 ) with elemental sulfur, using ethanol as an environmentally friendly solvent. The designed sulfur-FLG composite shows excellent electrochemical results. The assembled lithium-sulfur battery exhibits a stable rate capability up to a current rate of 2C, a coulombic efficiency approaching 100 % for 300 cycles at the current rate of C/4 (420 mA g-1 ), and a long cycle life up to 500 cycles delivering around 600 mAh g-1 at 2C (3350 mA g-1 ).

7.
ACS Appl Mater Interfaces ; 11(45): 41957-41971, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31584801

RESUMO

The design of magnetic nanostructures whose magnetic heating efficiency remains unaffected at the tumor site is a fundamental requirement to further advance magnetic hyperthermia in the clinic. This work demonstrates that the confinement of magnetic nanoparticles (NPs) into a sub-micrometer cavity is a key strategy to enable a certain degree of nanoparticle motion and minimize aggregation effects, consequently preserving the magnetic heat loss of iron oxide nanocubes (IONCs) under different conditions, including intracellular environments. We fabricated magnetic layer-by-layer (LbL) self-assembled polyelectrolyte sub-micrometer capsules using three different approaches, and we studied their heating efficiency as obtained in aqueous dispersions and after internalization by tumor cells. First, IONCs were added to the hollow cavities of LbL submicrocapsules, allowing the IONCs to move to a certain extent in the capsule cavities. Second, IONCs were coencapsulated into solid calcium carbonate cores coated with LbL polymer shells. Third, IONCs were incorporated within the polymer layers of the LbL capsule walls. In aqueous solution, higher specific absorption rate (SAR) values were related to those of free IONCs, while lower SAR values were recorded for capsule/core assemblies. However, after uptake by cancer cell lines (SKOV-3 cells), the SAR values of the free IONCs were significantly lower than those observed for capsule/core assemblies, especially after prolonged incubation periods (24 and 48 h). These results show that IONCs packed into submicrocavities preserve the magnetic losses, as the SAR values remained almost invariable. Conversely, free IONCs without the protective capsule shell agglomerated and their magnetic losses were strongly reduced. Indeed, IONC-loaded capsules and free IONCs reside inside endosomal and lysosomal compartments after cellular uptake and show strongly reduced magnetic losses due to the immobilization and aggregation in centrosymmetrical structures in the intracellular vesicles. The confinement of IONCs into sub-micrometer cavities is a key strategy to provide a sustained and predictable heating dose inside biological matrices.

8.
Nanomaterials (Basel) ; 9(3)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841528

RESUMO

All-cellulose composites with a potential application as food packaging films were prepared by dissolving microcrystalline cellulose in a mixture of trifluoroacetic acid and trifluoroacetic anhydride, adding cellulose nanofibers, and evaporating the solvents. First, the effect of the solvents on the morphology, structure, and thermal properties of the nanofibers was evaluated by atomic force microscopy (AFM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), respectively. An important reduction in the crystallinity was observed. Then, the optical, morphological, mechanical, and water barrier properties of the nanocomposites were determined. In general, the final properties of the composites depended on the nanocellulose content. Thus, although the transparency decreased with the amount of cellulose nanofibers due to increased light scattering, normalized transmittance values were higher than 80% in all the cases. On the other hand, the best mechanical properties were achieved for concentrations of nanofibers between 5 and 9 wt.%. At higher concentrations, the cellulose nanofibers aggregated and/or folded, decreasing the mechanical parameters as confirmed analytically by modeling of the composite Young's modulus. Finally, regarding the water barrier properties, water uptake was not affected by the presence of cellulose nanofibers while water permeability was reduced because of the higher tortuosity induced by the nanocelluloses. In view of such properties, these materials are suggested as food packaging films.

9.
Chemistry ; 25(9): 2322-2329, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30537238

RESUMO

Localized drug delivery represents one of the most challenging uses of systems based on conductive polymer films. Typically, anionic drugs are incorporated within conductive polymers through electrostatic interaction with the positively charged polymer. Following this approach, the synthetic glucocorticoid dexamethasone phosphate is often delivered from neural probes to reduce the inflammation of the surrounding tissue. In light of the recent literature on the neuroprotective and anti-inflammatory properties of tauroursodeoxycholic acid (TUDCA), for the first time, this natural bile acid was incorporated within poly(3,4-ethylenedioxythiophene) (PEDOT). The new material, PEDOT-TUDCA, efficiently promoted an electrochemically controlled delivery of the drug, while preserving optimal electrochemical properties. Moreover, the low cytotoxicity observed with viability assays, makes PEDOT-TUDCA a good candidate for prolonging the time span of chronic neural recording brain implants.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Sistemas de Liberação de Medicamentos , Polímeros , Ácido Tauroquenodesoxicólico , Materiais Biocompatíveis/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Humanos , Polímeros/química , Ácido Tauroquenodesoxicólico/química
10.
J Photochem Photobiol B ; 190: 137-145, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30529924

RESUMO

Over the past decades, nanotechnology has received great attention and brought revolutionary solutions for a number of challenges in scientific fields. Industrial, agricultural and medical applications of engineered nanomaterials have increased intensively. The ability of titanium dioxide nanoparticles (TiO2 NPs) to produce reactive oxygen species (ROS), when excited by ultra-violet (UV) light, makes them useful for effectively inactivate various pathogens. It is known that ROS also have signalling role in living organisms, therefore, TiO2 NPs-induced ROS can influence both enzymatic and non-enzymatic defence systems, and could play a role in the resistance of plants to pathogens. Herein, we studied the photocatalytic stress responses of grapevine (Vitis vinifera L.) as model plant, when exposed to a well-known photocatalyst, Degussa P25 TiO2 NPs. The photocatalytically produced ROS such as superoxide anion, hydroxyl radical and singlet oxygen were confirmed by electron paramagnetic resonance spectroscopy. Foliar exposure of five red cultivars (Cabernet sauvignon, Cabernet franc, Merlot, Kékfrankos and Kadarka) was carried out in blooming phenophase under field condition where plants are exposed to natural sunlight with relatively high UV radiation (with a maximum of ~ 45 W m-2). After two weeks of exposure, the effects of photogenerated ROS on the total phenolic content, antioxidant capacity, flavonol profile and the main macro-, microelements of the leaves were studied in detail. We found that foliar application of TiO2 NPs boosted the total phenolic content and biosynthesis of the leaf flavonols depending on the grapevine variety. Photocatalytically active TiO2 NPs also increased K, Mg, Ca, B and Mn levels in the leaves as shown by ICP-AES measurements.


Assuntos
Folhas de Planta/efeitos dos fármacos , Titânio/farmacologia , Vitis/química , Antioxidantes/análise , Flavonóis/análise , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Fenóis/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Titânio/efeitos da radiação , Raios Ultravioleta
11.
Nanomedicine (Lond) ; 14(6): 727-752, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30574827

RESUMO

AIM: Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency. MATERIALS & METHODS: Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells. RESULTS: Nut-Mag-SLNs showed good colloidal stability, the ability to cross an in vitro blood-brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug. CONCLUSION: Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme.


Assuntos
Portadores de Fármacos/química , Glioblastoma/tratamento farmacológico , Imidazóis/química , Lipídeos/química , Nanopartículas de Magnetita/química , Piperazinas/química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Transporte Biológico , Barreira Hematoencefálica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Imidazóis/uso terapêutico , Cinética , Tamanho da Partícula , Piperazinas/uso terapêutico , Propriedades de Superfície
12.
Nanoscale ; 11(1): 72-88, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30357214

RESUMO

In this study, taking into consideration the limitations of current treatments of glioblastoma multiforme, we fabricated a biomimetic lipid-based magnetic nanovector with a good loading capacity and a sustained release profile of the encapsulated chemotherapeutic drug, temozolomide. These nanostructures demonstrated an enhanced release after exposure to an alternating magnetic field, and a complete release of the encapsulated drug after the synergic effect of low pH (4.5), increased concentration of hydrogen peroxide (50 µM), and increased temperature due to the applied magnetic field. In addition, these nanovectors presented excellent specific absorption rate values (up to 1345 W g-1) considering the size of the magnetic component, rendering them suitable as potential hyperthermia agents. The presented nanovectors were progressively internalized in U-87 MG cells and in their acidic compartments (i.e., lysosomes and late endosomes) without affecting the viability of the cells, and their ability to cross the blood-brain barrier was preliminarily investigated using an in vitro brain endothelial cell-model. When stimulated with alternating magnetic fields (20 mT, 750 kHz), the nanovectors demonstrated their ability to induce mild hyperthermia (43 °C) and strong anticancer effects against U-87 MG cells (scarce survival of cells characterized by low proliferation rates and high apoptosis levels). The optimal anticancer effects resulted from the synergic combination of hyperthermia chronic stimulation and the controlled temozolomide release, highlighting the potential of the proposed drug-loaded lipid magnetic nanovectors for treatment of glioblastoma multiforme.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Hipertermia Induzida/métodos , Lipídeos/química , Nanopartículas de Magnetita/química , Barreira Hematoencefálica , Linhagem Celular Tumoral , Proliferação de Células , Sistemas de Liberação de Medicamentos , Endossomos/química , Humanos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Lisossomos/química , Magnetismo , Nanopartículas/química , Temperatura
13.
Colloids Surf B Biointerfaces ; 172: 471-479, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30199764

RESUMO

This study aimed to obtain bioactive nanosystems by combining cellulose acetate with three selected essential oils (EOs) to create spherical nanocapsules (NCs) using the solvent/anti-solvent technique. The biological activity of the obtained NCs was promoted by the use of some antimicrobial EOs: Peppermint, Cinnamon and lemongrass which were grafted on the cellulose acetate molecules. Due to their chemistry, such as long hydrocarbon tails and heads with functional groups these EOs were playing also the role of surfactant-like substance facilitating the formation of NCs. A dispersion of NCs was obtained in water and various spectroscopy techniques used to examine their size, morphology and chemistry. Dynamic light scattering calculate the size of the NCs whereas scanning electron microscopy showed their morphology. Fluorescent microscopy and Raman spectroscopy proved the attachment of the EOs in the cellulose acetate molecules. The antimicrobial activity of the obtained nanomaterials was tested against four microbial strains (bacteria: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and a yeast strain of Candida albicans). The obtained results demonstrated that such NCs can be used in a variety of applications including medical, pharmaceutical recipients and in household products for treating or preventing microbial colonization and biofilm development.


Assuntos
Anti-Infecciosos/farmacologia , Tecnologia Biomédica , Celulose/análogos & derivados , Nanocápsulas/química , Óleos Voláteis/química , Celulose/química , Difusão Dinâmica da Luz , Humanos , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Nanocápsulas/ultraestrutura , Espectrofotometria Ultravioleta , Análise Espectral Raman , Eletricidade Estática
14.
Sci Rep ; 8(1): 6958, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725133

RESUMO

We present a new class of carbon-based neural probes that consist of homogeneous glassy carbon (GC) microelectrodes, interconnects and bump pads. These electrodes have purely capacitive behavior with exceptionally high charge storage capacity (CSC) and are capable of sustaining more than 3.5 billion cycles of bi-phasic pulses at charge density of 0.25 mC/cm2. These probes enable both high SNR (>16) electrical signal recording and remarkably high-resolution real-time neurotransmitter detection, on the same platform. Leveraging a new 2-step, double-sided pattern transfer method for GC structures, these probes allow extended long-term electrical stimulation with no electrode material corrosion. Cross-section characterization through FIB and SEM imaging demonstrate strong attachment enabled by hydroxyl and carbonyl covalent bonds between GC microstructures and top insulating and bottom substrate layers. Extensive in-vivo and in-vitro tests confirmed: (i) high SNR (>16) recordings, (ii) highest reported CSC for non-coated neural probe (61.4 ± 6.9 mC/cm2), (iii) high-resolution dopamine detection (10 nM level - one of the lowest reported so far), (iv) recording of both electrical and electrochemical signals, and (v) no failure after 3.5 billion cycles of pulses. Therefore, these probes offer a compelling multi-modal platform for long-term applications of neural probe technology in both experimental and clinical neuroscience.


Assuntos
Encéfalo/fisiologia , Carbono/química , Dopamina/análise , Estimulação Elétrica/instrumentação , Neurotransmissores/análise , Animais , Encéfalo/citologia , Química Encefálica , Dopamina/metabolismo , Eletrodos Implantados , Desenho de Equipamento , Feminino , Microeletrodos , Neurotransmissores/metabolismo , Ratos Long-Evans
15.
Chemistry ; 24(41): 10300-10305, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29799647

RESUMO

PEDOT (Poly(3,4-ethylenedioxythiophene)) is one of the most promising electrode materials for biomedical applications like neural recording and stimulation, thanks to its enhanced biocompatibility and electronic properties. Drug delivery by PEDOT is typically achieved by incorporating drugs as dopants during the electrodeposition procedure and a subsequent release can be promoted by applying a cathodic trigger that reduces PEDOT while enabling the drug to diffuse. This approach has several disadvantages including, for instance, the release of contaminants mainly due to PEDOT decomposition during electrochemical release. Herein we describe a new strategy based on the formation of a chemical linkage between the drug and the conductive polymer. In particular, dexamethasone was successfully integrated into a new electropolymerized PEDOT-Dex composite, leading to a self-adjusting drug release system based on a biochemically hydrolysable bond between dexamethasone and PEDOT.

16.
ACS Omega ; 3(8): 8952-8962, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459028

RESUMO

Osteosarcoma is an aggressive form of bone cancer mostly affecting young people. To date, the most effective strategy for the treatment of osteosarcoma is the surgical removal of the tumor with or without combinational chemotherapy. In this study, we present the development of a pH-sensitive drug-delivery system in the form of microparticles, with increased chemotherapeutic action against the osteosarcoma cell line SAOS-2, and with reduced toxicity against the heart myoblastic cell line H9C2. The delivery system is composed of calcium carbonate and collagen type I, and is loaded with cerium dioxide (CeO2) nanoparticles (<25 nm) and the anticancer drug doxorubicin. The fabricated microparticles were fully characterized morphologically and physicochemically, and their ability to induce or inhibit apoptosis/necrosis was assessed using in vitro functional assays and flow cytometry. The results presented in this study show that the highest concentration (250 µg/mL) of the therapeutic microparticles (CaCO3-based therapeutic modulators (C-TherMods)), which corresponds to 6.4 µg/mL of encapsulated doxorubicin, can protect the H9C2 cells even after 120 h, since the percentage of viable cells at this time point is 65%. On the contrary, when H9C2 cells are treated with 0.5 µg/mL of free doxorubicin, 75% of the cells are dead only after 24 h. When SAOS-2 cells are treated with the same concentration of C-TherMods (250 µg/mL), the viability of SAOS-2 cells is 80% after 24 h, while it reduces to 50% after 120 h. At pH 6.0, the synergic effect of the pro-oxidant CeO2 nanoparticles and of the encapsulated doxorubicin leads to almost 100% of cell death, even at the lowest concentration of C-TherMods (50 µg/mL).

17.
ACS Appl Mater Interfaces ; 10(1): 651-659, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29272094

RESUMO

In this study, we report the fabrication of nanocomposites made of titanate nanosheets immobilized in a solid matrix of regenerated silk fibroin as novel heavy-metal-ion removal systems. The capacity of these nanocomposite films to remove lead, mercury, and copper cations from water was investigated, and as shown by the elemental quantitative analysis performed, their removal capacity is 73 mmol/g for all of the ions tested. We demonstrate that the nanocomposites can efficiently retain the adsorbed ions, with no release of titanate nanosheets occurring even after several exposure cycles to ionic solutions, eliminating the risk of release of potentially hazardous nanosubstances to the environment. We also prove that the introduction of sodium ions in the nanocomposite formulation makes the materials highly selective toward the lead ions. The developed biopolymer nanocomposites can be potentially used for the efficient removal of heavy-metal-ion pollutants from water and, thanks to their physical and optical characteristics, offer the possibility to be used in sensor applications.

18.
Nanomaterials (Basel) ; 7(9)2017 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-28926967

RESUMO

Cerium oxide nanoparticles (nanoceria), well known for their pro- and antioxidant features, have been recently proposed for the treatment of several pathologies, including cancer and neurodegenerative diseases. However, interaction between nanoceria and biological molecules such as proteins and lipids, short blood circulation time, and the need of a targeted delivery to desired sites are some aspects that require strong attention for further progresses in the clinical application of these nanoparticles. The aim of this work is the encapsulation of nanoceria into a liposomal formulation in order to improve their therapeutic potentialities. After the preparation through a reverse-phase evaporation method, size, Z-potential, morphology, and loading efficiency of nanoceria-loaded liposomes were investigated. Finally, preliminary in vitro studies were performed to test cell uptake efficiency and preserved antioxidant activity. Nanoceria-loaded liposomes showed a good colloidal stability, an excellent biocompatibility, and strong antioxidant properties due to the unaltered activity of the entrapped nanoceria. With these results, the possibility of exploiting liposomes as carriers for cerium oxide nanoparticles is demonstrated here for the first time, thus opening exciting new opportunities for in vivo applications.

19.
Biointerphases ; 12(3): 031002, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28704999

RESUMO

The authors present an electrochemically controlled, drug releasing neural interface composed of a glassy carbon (GC) microelectrode array combined with a multilayer poly(3,4-ethylenedioxythiophene) (PEDOT) coating. The system integrates the high stability of the GC electrode substrate, ideal for electrical stimulation and electrochemical detection of neurotransmitters, with the on-demand drug-releasing capabilities of PEDOT-dexamethasone compound, through a mechanically stable interlayer of PEDOT-polystyrene sulfonate (PSS)-carbon nanotubes (CNT). The authors demonstrate that such interlayer improves both the mechanical and electrochemical properties of the neural interface, when compared with a single PEDOT-dexamethasone coating. Moreover, the multilayer coating is able to withstand 10 × 106 biphasic pulses and delamination test with negligible change to the impedance spectra. Cross-section scanning electron microscopy images support that the PEDOT-PSS-CNT interlayer significantly improves the adhesion between the GC substrate and PEDOT-dexamethasone coating, showing no discontinuities between the three well-interconnected layers. Furthermore, the multilayer coating has superior electrochemical properties, in terms of impedance and charge transfer capabilities as compared to a single layer of either PEDOT coating or the GC substrate alone. The authors verified the drug releasing capabilities of the PEDOT-dexamethasone layer when integrated into the multilayer interface through repeated stimulation protocols in vitro, and found a pharmacologically relevant release of dexamethasone.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Carbono/química , Dexametasona , Sistemas de Liberação de Medicamentos/métodos , Nanotubos de Carbono/química , Polímeros/química , Poliestirenos/química , Dexametasona/química , Dexametasona/farmacocinética , Microeletrodos
20.
Chemphyschem ; 18(12): 1635-1641, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28371061

RESUMO

The localized in situ formation of tin dioxide (SnO2 ) nanoparticles embedded in poly(methyl methacrylate) (PMMA) films is presented. This is achieved by the photoinduced conversion of the tin acetate precursor included in polymeric films, through controlled UV or visible pulsed laser irradiation at λ=355 and 532 nm, respectively. The evolution of the formation of nanoparticles is followed by UV/Vis spectroscopy and shows that their growth is affected in different ways by the laser pulses at the two applied wavelengths. This, in combination with electron microscopy analysis, reveals that, depending on the irradiation wavelength, the size of the nanoparticles in the final nanocomposites differs. This difference is attributed to distinct mechanistic pathways that lead to the synthesis of small nanoparticles (from 1.5 to 4.5 nm) at λ=355 nm, whereas bigger ones (from 5 to 16 nm) are formed at λ=532 nm. At the same time, structural studies with both X-ray and electron diffraction measurements demonstrate the crystallinity of SnO2 nanoparticles in both cases, whereas XPS analysis confirms the light-induced oxidation of tin acetate into SnO2 . Taken all together, it is demonstrated that the pulsed laser irradiation at λ=355 and 532 nm leads to the formation of SnO2 nanoparticles with defined features highly dispersed in PMMA solid matrices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...