Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 477: 273-283, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34118273

RESUMO

The vertebrate retina contains an array of neural circuits that detect distinct features in visual space. Direction-selective (DS) circuits are an evolutionarily conserved retinal circuit motif - from zebrafish to rodents to primates - specialized for motion detection. During retinal development, neuronal subtypes that wire DS circuits form exquisitely precise connections with each other to shape the output of retinal ganglion cells tuned for specific speeds and directions of motion. In this review, we follow the chronology of DS circuit development in the vertebrate retina, including the cellular, molecular, and activity-dependent mechanisms that regulate the formation of DS circuits, from cell birth and migration to synapse formation and refinement. We highlight recent findings that identify genetic programs critical for specifying neuronal subtypes within DS circuits and molecular interactions essential for responses along the cardinal axes of motion. Finally, we discuss the roles of DS circuits in visual behavior and in certain human visual disease conditions. As one of the best-characterized circuits in the vertebrate retina, DS circuits represent an ideal model system for studying the development of neural connectivity at the level of individual genes, cells, and behavior.


Assuntos
Retina/embriologia , Retina/fisiologia , Vertebrados/fisiologia , Vias Visuais , Animais , Humanos , Neurogênese , Neurônios/fisiologia , Nistagmo Patológico/genética , Retina/citologia , Células Ganglionares da Retina/fisiologia , Sinapses , Vertebrados/embriologia
2.
Brain Behav Immun ; 83: 33-43, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31351184

RESUMO

Annual changes in day length enhance or suppress diverse aspects of immune function, giving rise to seasonal cycles of illness and mortality. The daily light-dark cycle also entrains circadian rhythms in immunity. Most published reports on immunological seasonality rely on measurements or interventions performed only at one point in the day. Because there can be no perfect matching of circadian phase across photoperiods of different duration, the manner in which these timescales interact to affect immunity is not understood. We examined whether photoperiodic changes in immune function reflect phenotypic changes that persist throughout the daily cycle, or merely reflect photoperiodic shifts in the circadian phase alignment of immunological rhythms. Diurnal rhythms in blood leukocyte trafficking, infection induced sickness responses, and delayed-type hypersensitivity skin inflammatory responses were examined at high-frequency sampling intervals (every 3 h) in Siberian hamsters (Phodopus sungorus) following immunological adaptation to summer or winter photoperiods. Photoperiod profoundly enhanced or suppressed immune function, in a trait-specific manner, and we were unable to identify a phase alignment of diurnal waveforms which eliminated these enhancing and suppressing effects of photoperiod. These results support the hypothesis that seasonal timescales affect immunity via mechanisms independent of circadian entrainment of the immunological circadian waveform.


Assuntos
Ritmo Circadiano/imunologia , Imunidade , Fotoperíodo , Estações do Ano , Adaptação Fisiológica/imunologia , Animais , Cricetinae , Masculino , Phodopus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...