Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Evol ; 89(9-10): 639-655, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757470

RESUMO

Hemocyanin is the oxygen transport protein of most molluscs and represents an important physiological factor that has to be well-adapted to their environments because of the strong influences of abiotic factors on its oxygen affinity. Multiple independent gene duplications and intron gains have been reported for hemocyanin genes of Tectipleura (Heterobranchia) and the caenogastropod species Pomacea canaliculata, which contrast with the uniform gene architectures of hemocyanins in Vetigastropoda. The goal of this study was to analyze hemocyanin gene evolution within the diverse group of Caenogastropoda in more detail. Our findings reveal multiple gene duplications and intron gains and imply that these represent general features of Apogastropoda hemocyanins. Whereas hemocyanin exon-intron structures are identical within different Tectipleura lineages, they differ strongly within Caenogastropoda among phylogenetic groups as well as between paralogous hemocyanin genes of the same species. Thus, intron accumulation took place more gradually within Caenogastropoda but finally led to a similar consequence, namely, a multitude of introns. Since both phenomena occurred independently within Heterobranchia and Caenogastropoda, the results support the hypothesis that introns may contribute to adaptive radiation by offering new opportunities for genetic variability (multiple paralogs that may evolve differently) and regulation (multiple introns). Our study indicates that adaptation of hemocyanin genes may be one of several factors that contributed to the evolution of the large diversity of Apogastropoda. While questions remain, this hypothesis is presented as a starting point for the further study of hemocyanin genes and possible correlations between hemocyanin diversity and adaptive radiation.


Assuntos
Gastrópodes , Hemocianinas , Animais , Gastrópodes/genética , Duplicação Gênica , Hemocianinas/genética , Íntrons/genética , Filogenia
2.
BMC Ecol Evol ; 21(1): 36, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663373

RESUMO

BACKGROUND: Hemocyanin is the oxygen transporter of most molluscs. Since the oxygen affinity of hemocyanin is strongly temperature-dependent, this essential protein needs to be well-adapted to the environment. In Tectipleura, a very diverse group of gastropods with > 27,000 species living in all kinds of habitats, several hemocyanin genes have already been analyzed. Multiple independent duplications of this gene have been identified and may represent potential adaptations to different environments and lifestyles. The aim of this study is to further explore the evolution of these genes by analyzing their exon-intron architectures. RESULTS: We have reconstructed the gene architectures of ten hemocyanin genes from four Tectipleura species: Aplysia californica, Lymnaea stagnalis, Cornu aspersum and Helix pomatia. Their hemocyanin genes each contain 53 introns, significantly more than in the hemocyanin genes of Cephalopoda (9-11), Vetigastropoda (15) and Caenogastropoda (28-33). The gene structures of Tectipleura hemocyanins are identical in terms of intron number and location, with the exception of one out of two hemocyanin genes of L. stagnalis that comprises one additional intron. We found that gene structures that differ between molluscan lineages most probably evolved more recently through independent intron gains. CONCLUSIONS: The strict conservation of the large number of introns in Tectipleura hemocyanin genes over 200 million years suggests the influence of a selective pressure on this gene structure. While we could not identify conserved sequence motifs within these introns, it may be simply the great number of introns that offers increased possibilities of gene regulation relative to hemocyanin genes with less introns and thus may have facilitated habitat shifts and speciation events. This hypothesis is supported by the relatively high number of introns within the hemocyanin genes of Pomacea canaliculata that has evolved independently of the Tectipleura. Pomacea canaliculata belongs to the Caenogastropoda, the sister group of Heterobranchia (that encompass Tectipleura) which is also very diverse and comprises species living in different habitats. Our findings provide a hint to some of the molecular mechanisms that may have supported the spectacular radiation of one of Metazoa's most species rich groups.


Assuntos
Gastrópodes , Hemocianinas , Animais , Evolução Molecular , Gastrópodes/genética , Hemocianinas/genética , Íntrons/genética , Moluscos/genética
3.
J Mol Evol ; 89(1-2): 62-72, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33439299

RESUMO

Hemocyanins are giant oxygen transport proteins that freely float within the hemolymph of most molluscs. The basic quaternary structure of molluscan hemocyanins is a cylindrical decamer with a diameter of 35 nm which is built of 400 kDa subunits. Previously published results, however, showed that one out of two hemocyanin subunits of Rapana venosa encompasses two polypeptides, one 300 kDa and one 100 kDa polypeptide which aggregate to typical 4 MDa and 8 MDa hemocyanin (di-)decamer molecules. It was shown that the polypeptides are bound most probably by one or more cysteine disulfide bridges but it remained open if these polypeptides were coded by one or two genes. Our here presented results clearly showed that both polypeptides are coded by one gene only and that this phenomenon can also be found in the gastropod Nucella lapillus. Thus, it can be defined as clade-specific for Muricidae, a group of the very diverse Caenogastropoda. In addition, we discovered a further deviation of this hemocyanin subunit within both species, namely a region of 340 mainly hydrophilic amino acids (especially histidines and aspartic acids) which have not been identified in any other molluscan hemocyanin, yet. Our results indicate that, within the quaternary structure, these additional amino acids most probably protrude within the inner part of didecamer cylinders, forming a large extra mass of up to 800 kDa. They presumably influence the structure of the protein and may affect the functionality. Thus, these findings reveal further insights into the evolution and structures of gastropod hemocyanins.


Assuntos
Gastrópodes , Hemocianinas , Animais , Gastrópodes/genética , Modelos Moleculares , Moluscos
4.
J Exp Zool A Ecol Integr Physiol ; 335(2): 228-238, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33146003

RESUMO

Terrestrial gastropods express metal-selective metallothioneins (MTs) by which they handle metal ions such as Zn2+ , Cd2+ , and Cu+ /Cu2+ through separate metabolic pathways. At the same time, they depend on the availability of sufficient amounts of Cu as an essential constituent of their respiratory protein, hemocyanin (Hc). It was, therefore, suggested that in snails Cu-dependent MT and Hc pathways might be metabolically connected. In fact, the Cu-specific snail MT (CuMT) is exclusively expressed in rhogocytes, a particular molluscan cell type present in the hemocoel and connective tissues. Snail rhogocytes are also the sites of Hc synthesis. In the present study, possible interactions between the metal-regulatory and detoxifying activity of MTs and the Cu demand of Hc isoforms was explored in the edible snail Cornu aspersum, one of the most common European helicid land snails. This species possesses CdMT and CuMT isoforms involved in metal-selective physiological tasks. In addition, C. aspersum expresses three different Hc isoforms (CaH ɑD, CaH ɑN, CaH ß). We have examined the effect of Cd2+ and Cu2+ exposure on metal accumulation in the midgut gland and mantle of C. aspersum, testing the impact of these metals on transcriptional upregulation of CdMT, CuMT, and the three Hc genes in the two organs. We found that the CuMT and CaH ɑD genes exhibit an organ-specific transcriptional upregulation in the midgut gland of Cu-exposed snails. These results are discussed in view of possible interrelationships between the metal-selective activity of snail MT isoforms and the synthesis and metabolism of Hc isoforms.


Assuntos
Cádmio/farmacologia , Cobre/farmacologia , Hemocianinas/metabolismo , Caramujos/efeitos dos fármacos , Animais , Sequência de Bases , Cádmio/metabolismo , Cobre/metabolismo , DNA Complementar , Regulação da Expressão Gênica/efeitos dos fármacos , Hemocianinas/genética , Metalotioneína , Metais/metabolismo , Metais/farmacologia , Caramujos/metabolismo
5.
Mol Phylogenet Evol ; 130: 99-103, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30326285

RESUMO

Hemocyanin is the primary respiratory protein for the majority of the Mollusca and therefore directly interfaces with the physiological requirements of each species and the environments to which they are adapted. Hemocyanin is therefore likely to have been evolutionarily imprinted by significant habitat shifts. In the gastropod clade Panpulmonata (>30,000 species) major realm transitions have occurred multiple times independently and may have contributed to the diversification of this group. Yet, little is known about the adaptive changes linked to these habitat shifts. In order to gain deeper insight into the evolution of panpulmonate hemocyanins and to infer possible impacts associated with those scenarios, we have assembled and analysed hemocyanin isoforms from 4 panpulmonate species: (i) Helix pomatia, (ii) Cantareus aspersus (both Helicidae, Stylommatophora), (iii) Arion vulgaris (Arionidae, Stylommatophora) and (iv) Lymnaea stagnalis (Lymnaeidae, Hygrophila). Additionally, we describe a new hemocyanin isoform within the genome of the euopisthobranch Aplysia californica. Using these newly acquired hemocyanin data, we performed a phylogenetic analysis that reveals independent duplication events of hemocyanin within lineages that correlate with significant habitat shifts.


Assuntos
Ecossistema , Gastrópodes/fisiologia , Hemocianinas/genética , Filogenia , Animais , Gastrópodes/genética , Genoma/genética , Isoformas de Proteínas/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...