Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944046

RESUMO

SUMMARY: RNA molecules play crucial roles in various biological processes. They mediate their function mainly by interacting with other RNAs or proteins. At present, information about these interactions is distributed over different resources, often providing the data in simple tab-delimited formats that differ between the databases. There is no standardized data format that can capture the nature of all these different interactions in detail. AVAILABILITY AND IMPLEMENTATION: Here, we propose the RNA interaction format (RIF) for the detailed representation of RNA-RNA and RNA-Protein interactions and provide reference implementations in C/C++, Python, and JavaScript. RIF is released under licence GNU General Public License version 3 (GNU GPLv3) and is available on https://github.com/RNABioInfo/rna-interaction-format.


Assuntos
RNA , Software , Bases de Dados Factuais , Proteínas
2.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882750

RESUMO

MOTIVATION: Neoantigens, tumor-specific protein fragments, are invaluable in cancer immunotherapy due to their ability to serve as targets for the immune system. Computational prediction of these neoantigens from sequencing data often requires multiple algorithms and sophisticated workflows, which are currently restricted to specific types of variants, such as single-nucleotide variants or insertions/deletions. Nevertheless, other sources of neoantigens are often overlooked. RESULTS: We introduce ScanNeo2 an improved and fully automated bioinformatics pipeline designed for high-throughput neoantigen prediction from raw sequencing data. Unlike its predecessor, ScanNeo2 integrates multiple sources of somatic variants, including canonical- and exitron-splicing, gene fusion events, and various somatic variants. Our benchmark results demonstrate that ScanNeo2 accurately identifies neoantigens, providing a comprehensive and more efficient solution for neoantigen prediction. AVAILABILITY AND IMPLEMENTATION: ScanNeo2 is freely available at https://github.com/ylab-hi/ScanNeo2/ and is accompanied by instruction and application data.


Assuntos
Neoplasias , Transcriptoma , Humanos , Antígenos de Neoplasias/genética , Software , Fluxo de Trabalho , Genômica , Neoplasias/genética
3.
Nucleic Acids Res ; 49(10): 5493-5501, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34019662

RESUMO

RNA-RNA inter- and intramolecular interactions are fundamental for numerous biological processes. While there are reasonable approaches to map RNA secondary structures genome-wide, understanding how different RNAs interact to carry out their regulatory functions requires mapping of intermolecular base pairs. Recently, different strategies to detect RNA-RNA duplexes in living cells, so called direct duplex detection (DDD) methods, have been developed. Common to all is the Psoralen-mediated in vivo RNA crosslinking followed by RNA Proximity Ligation to join the two interacting RNA strands. Sequencing of the RNA via classical RNA-seq and subsequent specialised bioinformatic analyses the result in the prediction of inter- and intramolecular RNA-RNA interactions. Existing approaches adapt standard RNA-seq analysis pipelines, but often neglect inherent features of RNA-RNA interactions that are useful for filtering and statistical assessment. Here we present RNAnue, a general pipeline for the inference of RNA-RNA interactions from DDD experiments that takes into account hybridisation potential and statistical significance to improve prediction accuracy. We applied RNAnue to data from different DDD studies and compared our results to those of the original methods. This showed that RNAnue performs better in terms of quantity and quality of predictions.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA , Análise de Sequência de RNA/métodos , Pareamento de Bases , Linhagem Celular , Análise de Dados , Humanos , Hibridização de Ácido Nucleico , RNA/química , RNA/metabolismo
4.
Bioinformatics ; 36(15): 4357-4359, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492127

RESUMO

MOTIVATION: The correct prediction of bacterial sRNA homologs is a prerequisite for many downstream analyses based on comparative genomics, but it is frequently challenging due to the short length and distinct heterogeneity of such homologs. GLobal Automatic Small RNA Search go (GLASSgo) is an efficient tool for the prediction of sRNA homologs from a single input query. To make the algorithm available to a broader community, we offer a Docker container along with a free-access web service. For non-computer scientists, the web service provides a user-friendly interface. However, capabilities were lacking so far for batch processing, version control and direct interaction with compatible software applications as a workflow management system can provide. RESULTS: Here, we present GLASSgo 1.5.2, an updated version that is fully incorporated into the workflow management system Galaxy. The improved version contains a new feature for extracting the upstream regions, allowing the search for conserved promoter elements. Additionally, it supports the use of accession numbers instead of the outdated GI numbers, which widens the applicability of the tool. AVAILABILITY AND IMPLEMENTATION: GLASSgo is available at https://github.com/lotts/GLASSgo/ under the MIT license and is accompanied by instruction and application data. Furthermore, it can be installed into any Galaxy instance using the Galaxy ToolShed.


Assuntos
Biologia Computacional , Software , Algoritmos , Genômica , Fluxo de Trabalho
5.
Microb Biotechnol ; 13(4): 1145-1161, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32267616

RESUMO

Pseudomonas putida is recognized as a very promising strain for industrial application due to its high redox capacity and frequently observed tolerance towards organic solvents. In this research, we studied the metabolic and transcriptional response of P. putida KT2440 exposed to large-scale heterogeneous mixing conditions in the form of repeated glucose shortage. Cellular responses were mimicked in an experimental setup comprising a stirred tank reactor and a connected plug flow reactor. We deciphered that a stringent response-like transcriptional regulation programme is frequently induced, which seems to be linked to the intracellular pool of 3-hydroxyalkanoates (3-HA) that are known to serve as precursors for polyhydroxyalkanoates (PHA). To be precise, P. putida is endowed with a survival strategy likely to access cellular PHA, amino acids and glycogen in few seconds under glucose starvation to obtain ATP from respiration, thereby replenishing the reduced ATP levels and the adenylate energy charge. Notably, cells only need 0.4% of glucose uptake to build those 3-HA-based energy buffers. Concomitantly, genes that are related to amino acid catabolism and ß-oxidation are upregulated during the transient absence of glucose. Furthermore, we provide a detailed list of transcriptional short- and long-term responses that increase the cellular maintenance by about 17% under the industrial-like conditions tested.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas putida , Pseudomonas putida/genética
6.
Front Genet ; 9: 124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719549

RESUMO

Bacterial small RNAs (sRNAs) are important post-transcriptional regulators of gene expression. The functional and evolutionary characterization of sRNAs requires the identification of homologs, which is frequently challenging due to their heterogeneity, short length and partly, little sequence conservation. We developed the GLobal Automatic Small RNA Search go (GLASSgo) algorithm to identify sRNA homologs in complex genomic databases starting from a single sequence. GLASSgo combines an iterative BLAST strategy with pairwise identity filtering and a graph-based clustering method that utilizes RNA secondary structure information. We tested the specificity, sensitivity and runtime of GLASSgo, BLAST and the combination RNAlien/cmsearch in a typical use case scenario on 40 bacterial sRNA families. The sensitivity of the tested methods was similar, while the specificity of GLASSgo and RNAlien/cmsearch was significantly higher than that of BLAST. GLASSgo was on average ∼87 times faster than RNAlien/cmsearch, and only ∼7.5 times slower than BLAST, which shows that GLASSgo optimizes the trade-off between speed and accuracy in the task of finding sRNA homologs. GLASSgo is fully automated, whereas BLAST often recovers only parts of homologs and RNAlien/cmsearch requires extensive additional bioinformatic work to get a comprehensive set of homologs. GLASSgo is available as an easy-to-use web server to find homologous sRNAs in large databases.

7.
Bioinformatics ; 32(22): 3525-3527, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412091

RESUMO

MOTIVATION: We developed VisualGraphX, a web-based, interactive visualization tool for large-scale graphs. Current graph visualization tools that follow the rich-internet paradigm lack an interactive and scalable visualization of graph-based data. VisualGraphX aims to provide a universal graph visualization tool that empowers the users to efficiently explore the data for themselves at a large scale. It is available as a visualization plugin for the Galaxy platform, such that VisualGraphX can be integrated into custom analysis pipelines. AVAILABILITY AND IMPLEMENTATION: VisualGraphX has been released as a visualization plugin for the Galaxy platform under AFL 3.0 and is available with instructions and application data at http://gitlab.com/comptrans/VisualGraphX/ CONTACT: bjoern.voss@ibvt.uni-stuttgart.de.


Assuntos
Processamento de Imagem Assistida por Computador , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...