Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Nature ; 422(6927): 93, 2003 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12621442
5.
Nature ; 422(6927): 93, 2003 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12621443
6.
Nature ; 422(6927): 93, 2003 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-12621444
7.
Science ; 294(5549): 2138-40, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11701891

RESUMO

Field-effect transistors based on two-component self-assembled monolayers of conjugated and insulating molecules were prepared; the conductance through them can be varied by more than three orders of magnitude by changing the applied gate bias. With very small ratios of conjugated to insulating molecules in the two-component monolayer, devices with only a few "electrically active" molecules can be achieved. At low temperatures, the peak channel conductance is quantized in units of 2e2/h (where e is the electron charge and h is Planck's constant). This behavior is indicative of transistor action in single molecules. On the basis of such single-molecule transistors, inverter circuits with gain are demonstrated.

8.
Nature ; 414(6862): 434-6, 2001 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-11719801

RESUMO

Understanding the doping mechanisms in the simplest superconducting copper oxide-the infinite-layer compound ACuO2 (where A is an alkaline earth metal)-is an excellent way of investigating the pairing mechanism in high-transition-temperature (high-Tc) superconductors more generally. Gate-induced modulation of the carrier concentration to obtain superconductivity is a powerful means of achieving such understanding: it minimizes the effects of potential scattering by impurities, and of structural modifications arising from chemical dopants. Here we report the transport properties of thin films of the infinite-layer compound CaCuO2 using field-effect doping. At high hole- and electron-doping levels, superconductivity is induced in the nominally insulating material. Maximum values of Tc of 89 K and 34 K are observed respectively for hole- and electron-type doping of around 0.15 charge carriers per CuO2. We can explore the whole doping diagram of the CuO2 plane while changing only a single electric parameter, the gate voltage.

9.
Nature ; 413(6857): 713-6, 2001 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-11607026

RESUMO

The use of individual molecules as functional electronic devices was proposed in 1974 (ref. 1). Since then, advances in the field of nanotechnology have led to the fabrication of various molecule devices and devices based on monolayer arrays of molecules. Single molecule devices are expected to have interesting electronic properties, but devices based on an array of molecules are easier to fabricate and could potentially be more reliable. However, most of the previous work on array-based devices focused on two-terminal structures: demonstrating, for example, negative differential resistance, rectifiers, and re-configurable switching. It has also been proposed that diode switches containing only a few two-terminal molecules could be used to implement simple molecular electronic computer logic circuits. However, three-terminal devices, that is, transistors, could offer several advantages for logic operations compared to two-terminal switches, the most important of which is 'gain'-the ability to modulate the conductance. Here, we demonstrate gain for electronic transport perpendicular to a single molecular layer ( approximately 10-20 A) by using a third gate electrode. Our experiments with field-effect transistors based on self-assembled monolayers demonstrate conductance modulation of more than five orders of magnitude. In addition, inverter circuits have been prepared that show a gain as high as six. The fabrication of monolayer transistors and inverters might represent an important step towards molecular-scale electronics.

10.
Nature ; 413(6858): 831-3, 2001 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-11677603

RESUMO

The observation of superconductivity in doped C60 has attracted much attention, as these materials represent an entirely new class of superconductors. A maximum transition temperature (Tc) of 40 K has been reported for electron-doped C60 crystals, while a Tc of 52 K has been seen in hole-doped crystals; only the copper oxide superconductors have higher transition temperatures. The results for C60 raise the intriguing questions of whether conventional electron-phonon coupling alone can produce such high transition temperatures, and whether even higher transition temperatures might be observed in other fullerenes. There have, however, been no confirmed reports of superconductivity in other fullerenes, though it has recently been observed in carbon nanotubes. Here we report the observation of superconductivity in single crystals of electric-field-doped C70. The maximum transition temperature of about 7 K is achieved when the sample is doped to approximately four electrons per C70 molecule, which corresponds to a half-filled conduction band. We anticipate superconductivity in smaller fullerenes at temperatures even higher than in C60 if the right charge density can be induced.

11.
Science ; 293(5539): 2432-4, 2001 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-11533443

RESUMO

C60 single crystals have been intercalated with CHCl3 and CHBr3 in order to expand the lattice. High densities of electrons and holes have been induced by gate doping in a field-effect transistor geometry. At low temperatures, the material turns superconducting with a maximum transition temperature of 117 K in hole-doped C60/CHBr3. The increasing spacing between the C60 molecules follows the general trend of alkali metal-doped C60 and suggests routes to even higher transition temperatures.

12.
Science ; 293(5539): 2430-2, 2001 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-11577230

RESUMO

We report on the modulation of the transport properties of thin films, grown by molecular beam epitaxy, of the spin-ladder compound [CaCu2O3]4, using the field effect in a gated structure. At high hole-doping levels, superconductivity is induced in the nominally insulating ladder material without the use of high-pressure or chemical substitution. The observation of superconductivity is in agreement with the theoretical prediction that holes doped into spin ladders could pair and possibly superconduct.

13.
Phys Rev Lett ; 86(17): 3843-6, 2001 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-11329338

RESUMO

The charge transport in a variety of herringbone-stacked organic molecular semiconductors is investigated in the temperature range from 10 to 550 K. A crossover from coherent bandlike charge transport with mobilities up to several thousand cm (2)/V s at low temperature to an incoherent hopping motion at high temperatures is observed. This is attributed to the localization of the charge carrier due to increased electron-phonon interaction and, finally, the formation of a lattice polaron.

14.
Science ; 292(5515): 252-4, 2001 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-11303093

RESUMO

The electrical properties of organic molecular crystals, such as polyacenes or C60, can be tuned from insulating to superconducting by application of an electric field. By structuring the gate electrode of such a field-effect switch, the charge carrier density, and therefore also the superfluid density, can be modulated. Hence, weak links that behave like Josephson junctions can be fabricated between two superconducting regions. The coupling between the superconducting regions can be tuned and controlled over a wide range by the applied gate bias. Such devices might be used in superconducting circuits, and they are a useful scientific tool to study superconducting material parameters, such as the superconducting gap, as a function of carrier concentration or transition temperature.

15.
Nature ; 410(6825): 189-92, 2001 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11242074

RESUMO

The electrical and optical properties of conjugated polymers have received considerable attention in the context of potentially low-cost replacements for conventional metals and inorganic semiconductors. Charge transport in these organic materials has been characterized in both the doped-metallic and the semiconducting state, but superconductivity has not hitherto been observed in these polymers. Here we report a distinct metal-insulator transition and metallic levels of conductivity in a polymer field-effect transistor. The active material is solution-cast regioregular poly(3-hexylthiophene), which forms relatively well ordered films owing to self-organization, and which yields a high charge carrier mobility (0.05-0.1 cm2 V(-1) s(-1)) at room temperature. At temperatures below approximately 2.35 K with sheet carrier densities exceeding 2.5 x 10(14) cm(-2), the polythiophene film becomes superconducting. The appearance of superconductivity seems to be closely related to the self-assembly properties of the polymer, as the introduction of additional disorder is found to suppress superconductivity. Our findings therefore demonstrate the feasibility of tuning the electrical properties of conjugated polymers over the largest range possible-from insulating to superconducting.

16.
Phys Rev Lett ; 86(5): 862-5, 2001 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-11177959

RESUMO

The coupling between conduction charges and the vibrational modes of the molecular lattice plays a defining role in the transport characteristics of organic semiconductors. Using electron tunneling spectroscopy, we obtain the electron--optical-phonon coupling spectrum in photodoped pentacene crystals at energies <30 meV. Comparison of the tunneling spectrum to infrared absorption data on the optical phonon density of states yields the energy dependence of the electron-phonon scattering matrix element. The integrated spectral weight of the electron-phonon coupling shows that superconductivity in pentacene is likely of electron-phonon origin.

18.
Nature ; 408(6812): 549-52, 2000 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11117735

RESUMO

Superconductivity in electron-doped C60 was first observed almost ten years ago. The metallic state and superconductivity result from the transfer of electrons from alkaline or alkaline-earth ions to the C60 molecule, which is known to be a strong electron acceptor. For this reason, it is very difficult to remove electrons from C60--yet one might expect to see superconductivity at higher temperatures in hole-doped than in electron-doped C60, because of the higher density of electronic states in the valence band than in the conduction band. We have used the technique of gate-induced doping in a field-effect transistor configuration to introduce significant densities of holes into C60. We observe superconductivity over an extended range of hole density, with a smoothly varying transition temperature Tc that peaks at 52 K. By comparison with the well established dependence of Tc on the lattice parameter in electron-doped C60, we anticipate that Tc values significantly in excess of 100 K should be achievable in a suitably expanded, hole-doped C60 lattice.

19.
Science ; 290(5493): 963-6, 2000 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-11062124

RESUMO

We report here on the structure and operating characteristics of an ambipolar light-emitting field-effect transistor based on single crystals of the organic semiconductor alpha-sexithiophene. Electrons and holes are injected from the source and drain electrodes, respectively. Their concentrations are controlled by the applied gate and drain-source voltages. Excitons are generated, leading to radiative recombination. Moreover, above a remarkably low threshold current, coherent light is emitted through amplified spontaneous emission. Hence, this three-terminal device is the basis of a very promising architecture for electrically driven laser action in organic semiconductors.

20.
Science ; 289(5479): 599-601, 2000 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-10915617

RESUMO

We report on electrically driven amplified spontaneous emission and lasing in tetracene single crystals using field-effect electrodes for efficient electron and hole injection. For laser action, feedback is provided by reflections at the cleaved edges of the crystal resulting in a Fabry-Perot resonator. Increasing the injected current density above a certain threshold value results in the decreasing of the spectral width of the emission from 120 millielectron volts to less than 1 millielectron volt because of gain narrowing and eventually laser action. High electron and hole mobilities as well as balanced charge carrier injection lead to improved exciton generation in these gate-controlled devices. Moreover, the effect of charge-induced absorption is substantially reduced in high-quality single crystals compared with amorphous organic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...