Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insights Imaging ; 14(1): 123, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37454342

RESUMO

BACKGROUND: Contrast-enhancing (CE) lesions are an important finding on brain magnetic resonance imaging (MRI) in patients with multiple sclerosis (MS) but can be missed easily. Automated solutions for reliable CE lesion detection are emerging; however, independent validation of artificial intelligence (AI) tools in the clinical routine is still rare. METHODS: A three-dimensional convolutional neural network for CE lesion segmentation was trained externally on 1488 datasets of 934 MS patients from 81 scanners using concatenated information from FLAIR and T1-weighted post-contrast imaging. This externally trained model was tested on an independent dataset comprising 504 T1-weighted post-contrast and FLAIR image datasets of MS patients from clinical routine. Two neuroradiologists (R1, R2) labeled CE lesions for gold standard definition in the clinical test dataset. The algorithmic output was evaluated on both patient- and lesion-level. RESULTS: On a patient-level, recall, specificity, precision, and accuracy of the AI tool to predict patients with CE lesions were 0.75, 0.99, 0.91, and 0.96. The agreement between the AI tool and both readers was within the range of inter-rater agreement (Cohen's kappa; AI vs. R1: 0.69; AI vs. R2: 0.76; R1 vs. R2: 0.76). On a lesion-level, false negative lesions were predominately found in infratentorial location, significantly smaller, and at lower contrast than true positive lesions (p < 0.05). CONCLUSIONS: AI-based identification of CE lesions on brain MRI is feasible, approaching human reader performance in independent clinical data and might be of help as a second reader in the neuroradiological assessment of active inflammation in MS patients. CRITICAL RELEVANCE STATEMENT: Al-based detection of contrast-enhancing multiple sclerosis lesions approaches human reader performance, but careful visual inspection is still needed, especially for infratentorial, small and low-contrast lesions.

2.
Eur Radiol Exp ; 5(1): 19, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33977358

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) is the modality of choice for evaluating soft tissue damage along the spine in the emergency setting, yet access and fast protocol availability are limited. We assessed the performance of a sagittal T2-weighted DIXON turbo spin-echo sequence and investigated whether additional standard sagittal T1-weighted sequences are necessary in suspected spinal fluid collections/bleedings. METHODS: Seventy-four patients aged 62.9 ± 19.3 years (mean ± standard deviation) with MRI including a sagittal T2-weighted DIXON sequence and a T1-weighted sequence were retrospectively included. Thirty-four patients (45.9%) showed a spinal fluid collection/bleeding. Two layouts (layout 1: fat-only and water-only and in-phase images of the DIXON sequence and T1-weighted images; layout 2: fat-only and water-only and in-phase images of the DIXON sequence) were evaluated by three readers (R1, R2, and R3) concerning presence of spinal fluid collections/bleedings and diagnostic confidence from 1 (very low confidence) to 5 (very high confidence). χ2 and κ statistics were used. RESULTS: There was no difference in detecting spinal fluid collections/bleedings between the layouts (R1 and R2 detected all, R3 missed one spinal fluid collection/bleeding in the same patient in both layouts). Confidence was high (layout 1, R1 4.26 ± 0.81, R2 4.28 ± 0.81, R3 4.32 ± 0.79; layout 2, R1 3.93 ± 0.70, R2 4.09 ± 0.86, R3 3.97 ± 0.73), with higher inter-reader agreement for layout 1 (κ 0.691-0.780) than for layout 2 (κ 0.441-0.674). CONCLUSIONS: A sagittal T2-weighted DIXON sequence provides diagnostic performance similar to a protocol including standard T1-weighted sequences.


Assuntos
Imageamento por Ressonância Magnética , Coluna Vertebral , Humanos , Estudos Retrospectivos , Coluna Vertebral/diagnóstico por imagem
3.
AJR Am J Roentgenol ; 216(5): 1308-1317, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33703925

RESUMO

OBJECTIVE. The purpose of our study was to evaluate simulated sparse-sampled MDCT combined with statistical iterative reconstruction (SIR) for low-dose imaging of patients with spinal instrumentation. MATERIALS AND METHODS. Thirty-eight patients with implanted hardware after spinal instrumentation (24 patients with short- or long-term instrumentation-related complications [i.e., adjacent segment disease, screw loosening or implant failure, or postoperative hematoma or seroma] and 14 control subjects with no complications) underwent MDCT. Scans were simulated as if they were performed with 50% (P50), 25% (P25), 10% (P10), and 5% (P5) of the projections of the original acquisition using an in-house-developed SIR algorithm for advanced image reconstructions. Two readers performed qualitative image evaluations of overall image quality and artifacts, image contrast, inspection of the spinal canal, and diagnostic confidence (1 = high, 2 = medium, and 3 = low confidence). RESULTS. Although overall image quality decreased and artifacts increased with reductions in the number of projections, all complications were detected by both readers when 100% of the projections of the original acquisition (P100), P50, and P25 imaging data were used. For P25 data, diagnostic confidence was still high (mean score ± SD: reader 1, 1.2 ± 0.4; reader 2, 1.3 ± 0.5), and interreader agreement was substantial to almost perfect (weighted Cohen κ = 0.787-0.855). The mean volumetric CT dose index was 3.2 mGy for P25 data in comparison with 12.6 mGy for the original acquisition (P100 data). CONCLUSION. The use of sparse sampling and SIR for low-dose MDCT in patients with spinal instrumentation facilitated considerable reductions in radiation exposure. The use of P25 data with SIR resulted in no missed complications related to spinal instrumentation and allowed high diagnostic confidence, so using only 25% of the projections is probably enough for accurate and confident diagnostic detection of major instrumentation-related complications.


Assuntos
Artefatos , Fixadores Internos , Tomografia Computadorizada Multidetectores/métodos , Complicações Pós-Operatórias/diagnóstico por imagem , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Metais , Pessoa de Meia-Idade , Estudos Retrospectivos , Coluna Vertebral/diagnóstico por imagem
4.
Eur Radiol ; 30(5): 2821-2829, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32002640

RESUMO

OBJECTIVES: Normative brain volume reports (NBVRs) are becoming more and more available for the workup of dementia patients in clinical routine. However, it is yet unknown how this information can be used in the radiological decision-making process. The present study investigates the diagnostic value of NBVRs for detection and differential diagnosis of distinct regional brain atrophy in several dementing neurodegenerative disorders. METHODS: NBVRs were obtained for 81 consecutive patients with distinct dementing neurodegenerative diseases and 13 healthy controls (HC). Forty Alzheimer's disease (AD; 18 with dementia, 22 with mild cognitive impairment (MCI), 11 posterior cortical atrophy (PCA)), 20 frontotemporal dementia (FTD), and ten semantic dementia (SD) cases were analyzed, and reports were tested qualitatively for the representation of atrophy patterns. Gold standard diagnoses were based on the patients' clinical course, FDG-PET imaging, and/or cerebrospinal fluid (CSF) biomarkers following established diagnostic criteria. Diagnostic accuracy of pattern representations was calculated. RESULTS: NBVRs improved the correct identification of patients vs. healthy controls based on structural MRI for rater 1 (p < 0.001) whereas the amount of correct classifications was rather unchanged for rater 2. Correct differential diagnosis of dementing neurodegenerative disorders was significantly improved for both rater 1 (p = 0.001) and rater 2 (p = 0.022). Furthermore, interrater reliability was improved from moderate to excellent for both detection and differential diagnosis of neurodegenerative diseases (κ = 0.556/0.894 and κ = 0.403/0.850, respectively). CONCLUSION: NBVRs deliver valuable and observer-independent information, which can improve differential diagnosis of neurodegenerative diseases. KEY POINTS: • Normative brain volume reports increase detection of neurodegenerative atrophy patterns compared to visual reading alone. • Differential diagnosis of regionally distinct atrophy patterns is improved. • Agreement between radiologists is significantly improved from moderate to excellent when using normative brain volume reports.


Assuntos
Algoritmos , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
5.
Clin Neuroradiol ; 30(4): 749-759, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31696279

RESUMO

PURPOSE: To evaluate image quality and confidence for planning of periradicular infiltrations using virtually lowered tube currents and in-house developed iterative reconstruction (IR) for multidetector computed tomography (MDCT). METHODS: A total of 20 patients (mean age 54.9 ± 13.1 years) underwent MDCT for planning purposes of periradicular infiltrations at the lumbosacral spine (120 kVp and 100 mAs). Planning scans were simulated as if they were performed at 50% (D50), 10% (D10), 5% (D5), and 1% (D1) of the tube current of original scanning. Image reconstruction was achieved with two levels of IR (A: similar in appearance to clinical reconstructions, B: 10 times stronger noise reduction). Qualitative image evaluation was performed by two readers (R1 and R2) considering overall image quality and artifacts, image contrast, determination of nerve root, and confidence for intervention planning (scoring: 1 high, 2 medium, and 3 low confidence). RESULTS: Level A of IR was favorable regarding overall image quality, artifacts, image contrast, and nerve root depiction according to both readers, with preserved good to excellent scores down to D10 scans. The confidence for intervention planning was not significantly different (p > 0.05) between scans with tube currents virtually lowered down to 10% as compared to the original scans when using level A of IR (R1: 1.2 ± 0.4, R2: 1.1 ± 0.3). Inter-reader agreement for planning confidence was good to excellent (range of weighted Cohen's kappa: 0.62-1.00). CONCLUSION: The use of MDCT for planning purposes of lumbosacral periradicular infiltrations may be possible with tube currents lowered down to 10% of standard dose (equal to 10 mAs) without limitations in planning confidence.


Assuntos
Tomografia Computadorizada Multidetectores , Coluna Vertebral , Algoritmos , Artefatos , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador
6.
AJR Am J Roentgenol ; 213(2): 410-416, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31039015

RESUMO

OBJECTIVE. The purpose of this study was to systematically evaluate image quality, detectability of large-vessel occlusion or dissection, and diagnostic confidence in CT angiography (CTA) with virtually lowered tube current and iterative reconstruction in patients with suspected acute stroke. MATERIALS AND METHODS. Thirty patients (15 with large-vessel occlusion or dissection) underwent CTA of the supraaortal up to the intracranial arterial vessels. CTA scans were simulated as if they were made at 50% (D50), 25% (D25), and 10% (D10) of the original tube current. Image reconstruction was achieved with two levels of iterative reconstruction (A, similar to clinical reconstructions; B, two times stronger regularization). Two readers performed qualitative image evaluation considering overall image quality, artifacts, vessel contrast, detection of vessel abnormalities, and diagnostic confidence. RESULTS. Level B of iterative reconstruction was favorable regarding overall image quality and artifacts for D10, whereas level A was favorable for D100 and D50. CTA scans at D25 and both levels of iterative reconstruction still showed good vessel contrast, with even peripheral arterial branches of the anterior, middle, and posterior cerebral arteries being clearly detectable. Furthermore, CTA scans at D25 and level A of iterative reconstruction showed an adequate level of diagnostic confidence without any missed large-vessel occlusion or dissection according to evaluations by both readers. CONCLUSION. CTA with iterative reconstruction and tube currents decreased to 25% of that for original imaging is feasible without limitations in vessel contrast or detection of vessel abnormalities in patients with suspected acute stroke. Thus, the approach evaluated enables substantial reductions in radiation exposure for patients undergoing head and neck CTA.


Assuntos
Angiografia Cerebral/métodos , Angiografia por Tomografia Computadorizada/métodos , Doses de Radiação , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Artefatos , Meios de Contraste , Feminino , Humanos , Iopamidol/análogos & derivados , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos
7.
Radiology ; 291(2): 429-435, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30860448

RESUMO

Background Administration of a gadolinium-based contrast material is widely considered obligatory for follow-up imaging of patients with multiple sclerosis (MS). However, advances in MRI have substantially improved the sensitivity for detecting new or enlarged lesions in MS. Purpose To investigate whether the use of contrast material has an effect on the detection of new or enlarged MS lesions and, consequently, the assessment of interval progression. Materials and Methods In this retrospective study based on a local prospective observational cohort, 507 follow-up MR images obtained in 359 patients with MS (mean age, 38.2 years ± 10.3; 246 women, 113 men) were evaluated. With use of subtraction maps, nonenhanced images (double inversion recovery [DIR], fluid-attenuated inversion recovery [FLAIR]) and contrast material-enhanced (gadoterate meglumine, 0.1 mmol/kg) T1-weighted images were separately assessed for new or enlarged lesions in independent readings by two readers blinded to each other's findings and to clinical information. Primary outcome was the percentage of new or enlarged lesions detected only on contrast-enhanced T1-weighted images and the assessment of interval progression. Interval progression was defined as at least one new or unequivocally enlarged lesion on follow-up MR images. Results Of 507 follow-up images, 264 showed interval progression, with a total of 1992 new or enlarged and 207 contrast-enhancing lesions. Four of these lesions (on three MR images) were retrospectively detected on only the nonenhanced images, corresponding to 1.9% (four of 207) of the enhancing and 0.2% (four of 1992) of all new or enlarged lesions. Nine enhancing lesions were not detected on FLAIR-based subtraction maps (nine of 1442, 0.6%). In none of the 507 images did the contrast-enhanced sequences reveal interval progression that was missed in the readouts of the nonenhanced sequences, with use of either DIR- or FLAIR-based subtraction maps. Interrater agreement was high for all three measures, with intraclass correlation coefficients of 0.91 with FLAIR, 0.94 with DIR, and 0.99 with contrast-enhanced T1-weighted imaging. Conclusion At 3.0 T, use of a gadolinium-based contrast agent at follow-up MRI did not change the diagnosis of interval disease progression in patients with multiple sclerosis. © RSNA, 2019 See also the editorial by Saindane in this issue.


Assuntos
Encefalopatias/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Adulto , Encéfalo/patologia , Encefalopatias/patologia , Meios de Contraste/uso terapêutico , Feminino , Gadolínio/uso terapêutico , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Estudos Retrospectivos
8.
Invest Radiol ; 54(6): 319-324, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30720557

RESUMO

OBJECTIVE: The aim of this study was to assess the performance of double inversion recovery (DIR) sequences accelerated by compressed sensing (CS) in a clinical setting. MATERIALS AND METHODS: We included 106 patients with MS (62 female [58%]; mean age, 44.9 ± 11.0 years) in this prospective study. In addition to a full magnetic resonance imaging protocol including a conventional SENSE accelerated DIR, we acquired a CS DIR (time reduction, 51%). We generated subtraction maps between the two DIR sequences to visualize focal intensity differences. Two neuroradiologists independently assessed these maps for intensity differences, which were categorized into definite MS lesions, possible lesions, or definite artifacts. Counts of focal intensity differences were compared using a Wilcoxon rank sum test. Moreover, conventional lesion counts were acquired for both sequences in independent readouts, and agreement between the DIR variants was assessed with intraclass correlation coefficients. RESULTS: No hyperintensity that was rated as definite lesion was missed in the CS DIR. Two possible lesions were only detected in the conventional DIR, one only in the CS DIR (no significant difference, P = 0.57). The conventional DIR showed significantly more definite artifacts within the white matter (P = 0.024) and highly significantly more at the cortical-sulcal interface (P < 0.001). For both readers, intraclass correlation coefficient between the lesion counts in the two DIR variants was near perfect (0.985 for reader 1 and 0.981 for reader 2). CONCLUSIONS: Compressed sensing can be used to substantially reduce scan time of DIR sequences without compromising diagnostic quality. Moreover, the CS accelerated DIR proved to be significantly less prone to imaging artifacts.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/patologia , Adulto , Feminino , Humanos , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes
9.
Int J Cancer ; 135(8): 1800-11, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24623448

RESUMO

Wnt/ß-catenin signaling plays a crucial role in the regulation of colon tissue regeneration and the development of colon tumors. Under physiological conditions, ß-catenin activity is tightly controlled. However, the majority of sporadic forms of colorectal cancer are characterized by inactivation of the tumor suppressor gene APC due to loss of heterozygosity (LOH), resulting in deregulation of the protein ß-catenin. Apart from known ß-catenin target genes like MYC, OPG, and DKK4, the gene TNFRSF19, a member of the TNF receptor superfamily, is regulated by ß-catenin in mesenchymal stem cells (hMSC). We found that TNFRSF19 is frequently overexpressed in colorectal cancer cell lines and primary colorectal carcinomas. Further characterization revealed that both isoforms of TNFRSF19, TNFRSF19.1 and TNFRSF19.2, are regulated in a ß-catenin dependent manner. The transcript TNFRSF19.2 encodes a 417 amino acid long protein containing a TRAF-binding site that links the TNFRSF19.2 to NF-κB signaling, whereas the isoform TNFRSF19.1 lacks this TRAF-binding site. Nevertheless both isoform 1 and 2 induced the activity of an NF-κB reporter gene. NF-κB signaling is important for inflammatory processes and chronic inflammatory diseases like ulcerative colitis and Crohn's disease, which are associated with increased risk for developing colorectal cancer. The observation that TNFRSF19 is a ß-catenin target gene and TNFRSF19 receptor molecules activate NF-κB signaling shows that ß-catenin regulates NF-κB activity via TNFRSF19, suggesting that TNFRSF19 may contribute to the development of colorectal tumors with deregulated ß-catenin activity.


Assuntos
NF-kappa B/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , beta Catenina/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Regiões Promotoras Genéticas , Receptores do Fator de Necrose Tumoral/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...