Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Prosthodont ; 36(3): 343­353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34003198

RESUMO

PURPOSE: To investigate the fracture load of different veneers for monolithic single-unit fixed dental prostheses (FDPs) made of a novel potential framework material, polyphenylene sulfone (PPSU). MATERIALS AND METHODS: The fracture loads of four PPSU frameworks with different veneers (manual polymer veneer with Ceramage Body A3B; prefabricated polymer veneer with Novo.lign; digital polymer veneer with Telio CAD; digital ceramic veneer with IPS Empress CAD) and a monolithic control group (PPSU, Gehr) were examined initially and after 1,200,000 masticatory (50 N, 1.3 Hz) and 6,000 thermal cycles (5°C/55°C). Fracture analysis was performed using light microscope imaging. Fracture types were classified, and relative frequencies were determined. Univariate analysis of variance, post hoc Scheffé, partial eta squared, Kruskal-Wallis test, and Weibull moduli using the maximum likelihood estimation method were calculated. The defined level of significance was adjusted by Bonferroni correction (P < .005). RESULTS: Aging did not affect the fracture load values. Single-unit FDPs with a digital ceramic veneer showed lower values than monolithic and manual polymer-veneer specimens. Single-unit FDPs with a prefabricated and digital polymer veneer were in the same value range as specimens with a manual polymer and digital ceramic veneer. No differences were observed between manual polymer veneer and monolithic single-unit FDPs. All veneered specimens showed a fracture of the veneer. For monolithic single-unit FDPs, a plastic deformation was observed. CONCLUSION: Veneered and monolithic PPSU showed sufficient fracture load values to indicate successful clinical use in single-unit FDPs. The choice of veneering method and material may play a minor role.

2.
Clin Oral Investig ; 26(11): 6617-6628, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35840737

RESUMO

OBJECTIVES: The aim of this study is to investigate the influence of the material and corresponding sintering protocol, layer thickness, and aging on the two-body wear (2BW) and fracture load (FL) of 4Y-TZP crowns. MATERIALS AND METHODS: Multi-layer 4Y-TZP crowns in three thicknesses (0.5 mm/1.0 mm/1.5 mm) were sintered by high-speed (Zolid RS) or conventional (Zolid Gen-X) sintering. 2BW of ceramic and enamel antagonist after aging (1,200,000 mechanical-, 6000 thermal-cycles) was determined by 3D-scanning before and after aging and subsequent matching to determine volume and height loss (6 subgroups, n = 16/subgroup). FL was examined initially and after aging (12 subgroups, n = 16/subgroup). Fractographic analyses were performed using light-microscope imaging. Global univariate analysis of variance, one-way ANOVA, linear regression, Spearman's correlation, Kolgomorov-Smirnov, Mann-Whitney U, and t test were computed (alpha = 0.05). Weibull moduli were determined. Fracture types were analyzed using Ciba Geigy table. RESULTS: Material/sintering protocol did not influence 2BW (crowns: p = 0.908, antagonists: p = 0.059). High-speed sintered Zolid RS presented similar (p = 0.325-0.633) or reduced (p < 0.001-0.047) FL as Zolid Gen-X. Both 4Y-TZPs showed an increased FL with an increasing thickness (0.5(797.3-1429 N) < 1.0(2087-2634 N) < 1.5(2683-3715 N)mm; p < 0.001). For most groups, aging negatively impacted FL (p < 0.001-0.002). Five 0.5 mm specimens fractured, four showed cracks during and after aging. CONCLUSIONS: High-speed sintered crowns with a minimum thickness of 1.0 mm showed sufficient mechanical properties to withstand masticatory forces, even after a simulated aging period of 5 years. CLINICAL RELEVANCE: Despite the manufacturer indicating a thickness of 0.5 mm to be suitable for single crowns, a minimum thickness of 1.0 mm should be used to ensure long-term satisfactory results.


Assuntos
Dente , Zircônio , Teste de Materiais , Coroas , Cerâmica , Porcelana Dentária , Análise do Estresse Dentário
3.
J Prosthet Dent ; 128(1): 93-99, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33602540

RESUMO

STATEMENT OF PROBLEM: Polyphenylene sulfone (PPSU) is a thermoplastic that can be processed using 3-dimensional printing. PPSU is new to dentistry, and scientific data on its properties are lacking. PURPOSE: The purpose of this in vitro study was to test the surface properties and the tensile bond strength (TBS) between PPSU and a veneering composite resin in comparison with a polyetheretherketone (PEEK). MATERIAL AND METHODS: Gehr PPSU (PPSU-B1), Radel R-5000 NT (PPSU-B2), and Juvora Dental Disc (PEEK-CG) substrates were cut from bulk material, while FIL-A-GEHR PPSU (PPSU-3D) was 3-dimensionally printed (N=504, n=126/material). TBS to veneering composite resin (CeramageUp) was tested initially and after 5000 and 10 000 thermocycles, and fracture types were analyzed. Surface free energy (SFE) and surface roughness (Ra) were determined after pretreatment with aluminum oxide (Al2O3) of different grain sizes (50 and 110 µm) applied with different pressures (0.1, 0.2, 0.4 MPa), silicon dioxide (SiO2)-coated Al2O3 (0.28 MPa), sulfuric acid, or polished. Qualitative surface characterization was performed by using a scanning electron microscope (SEM). One-way ANOVA, the Kruskal-Wallis, Mann-Whitney U, and the Spearman correlation tests were computed (α=.05). RESULTS: PPSU-3D and PEEK-CG presented higher TBS results than PPSU-B1 and PPSU-B2. Initial TBS values were higher than after 10 000 thermocycles. Adhesive fractures between substrate and veneering composite resin occurred most frequently. With a few exceptions, PEEK-CG presented higher SFE values than all other materials within a pretreatment group, while PPSU-3D and PEEK-CG showed consistently high Ra values. An increase in pressure and particle size increased SFE and Ra. CONCLUSIONS: FFF-printed PPSU-3D showed similar TBS values with the veneering composite resin to the more established PEEK. Pretreatment methods devised for PEEK represent valid strategies for increasing both the SFE and Ra of the high-performance polymer PPSU.


Assuntos
Resinas Compostas , Colagem Dentária , Resinas Compostas/química , Resinas Compostas/uso terapêutico , Cetonas/química , Teste de Materiais , Polietilenoglicóis/química , Polímeros , Impressão Tridimensional , Cimentos de Resina , Dióxido de Silício , Sulfonas , Propriedades de Superfície , Resistência à Tração
4.
J Mech Behav Biomed Mater ; 119: 104504, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33845296

RESUMO

PURPOSE: Evaluation of the effect of three different dynamic fatigue protocols on the fracture resistance of two monolithic strength-gradient zirconia materials. MATERIALS AND METHODS: A total of 240 specimens (3 × 4 × 45 mm) was milled from two different layers (incisal and middle) of two types of strength-gradient zirconia blanks (IPS e. max ZirCAD MT Multi A2 vs. IPS e. max ZirCAD Prime A2), resulting in 60 specimens per material and layer group (IPS e. max ZirCAD MT Multi A2: incisal (MI), middle (MM); IPS e. max ZirCAD Prime A2: incisal (PI), middle (PM)). Each group was divided into one static (n = 15) and three dynamic fatigue protocols (N = 45, n = 15): i. 50 N increase every 5000 cycles ii. Increase by 5% of static fracture load every 5000 cycles iii. 10 N increase every 1000 cycles until facture. All specimens were loaded until facture in CeraTest 2 k. Kaplan-Meier, Log-Rank and Chi-squared-test as well as Weibull statistics were performed. A fractographic analysis was performed. The specimens were classified according to the number of crack origins and evaluated using the Ciba-Geigy table. RESULTS: With regard to the fracture load, in the static loading MI and PI showed a higher fracture load and in dynamic fatigue protocol 2 PI showed a lower fracture load. The number of cycles until fracture only differed within three groups: MM and MI survived a higher number of cycles in dynamic fatigue protocol 2; PI survived a higher number of cycles in dynamic fatigue protocol 2 than in protocol 1. Within dynamic fatigue protocols, PM resisted the highest number of cycles in protocol 1 and 3 and MI in protocol 2. Comparing groups, Weibull modulus differed only within the static loading, with PI showing lower values than MM and MI. Within the material groups, MI showed higher values in static loading than in dynamic fatigue protocol 1 and 2, and PI showed higher values in the dynamic fatigue protocol 3 than in static loading. With regard to fracture patterns, no differences were found between the groups. CONCLUSIONS: Dynamic fatigue protocols provide clinically relevant information on the long-term stability and reliability of monolithic strength-gradient zirconia materials. However, no definitive instructions for dynamic testing can be provided from this investigation.


Assuntos
Cerâmica , Zircônio , Desenho Assistido por Computador , Porcelana Dentária , Falha de Restauração Dentária , Análise do Estresse Dentário , Teste de Materiais , Reprodutibilidade dos Testes , Propriedades de Superfície
5.
J Mech Behav Biomed Mater ; 119: 104544, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33901966

RESUMO

In the seminal field of 3D printing of dental restorations, the time and cost saving manufacturing of removable and fixed dental prostheses from thermoplastic polymer materials employing fused filament fabrication (FFF) is gaining momentum. As of today, the additive manufacturing of the established semi-crystalline polyetheretherketone (PEEK) requires extensive post-processing and lacks precision. In this context, the amorphous polyphenylene sulfone (PPSU) may provide a higher predictability and reliability of the results. The aim of this study was to investigate the mechanical properties of PPSU and PEEK processed by FFF (PPSU1-3D (PPSU Radel) and PPSU2-3D (Ultrason P 3010 NAT)) or extrusion (PPSU1-EX (Radel R-5000 NT) and PEEK-CG (PEEK Juvora)). Three-point flexural strength, two-body wear, and Martens hardness (HM) and indentation modulus (EIT) were tested after aging. One-way ANOVA, the Kruskal-Wallis and the Pearson's and Spearman's correlation tests were computed (α = 0.05). PPSU1-3D and PPSU2-3D showed lower flexural strength values than PPSU1-EX and PEEK-CG. PPSU1-3D showed the highest, and PEEK-CG and PPSU1-EX the lowest height loss. The highest HM and EIT results were observed for PEEK-CG and the lowest for PPSU1-3D. Correlations were observed between all parameters except for the application height. In conclusion, the manufacturing process affected the flexural strength of PPSU, with 3D printed specimens presenting lower values than specimens cut from prefabricated molded material. This finding indicates that the 3D printing parameters employed for the additive manufacturing of PPSU specimens in the present investigation require further optimization. For 3D printed specimens, the quality of the filament showed an impact on the mechanical properties, underlining the importance of adhering to high quality standards during filament fabrication. Extruded PPSU led to comparable results with PEEK for flexural strength and two-body wear, indicating this novel dental restorative material to be a suitable alternative to the established PEEK for the manufacturing of both removable and fixed dental prostheses.


Assuntos
Resistência à Flexão , Impressão Tridimensional , Materiais Dentários , Teste de Materiais , Polímeros , Reprodutibilidade dos Testes
6.
Materials (Basel) ; 13(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961873

RESUMO

The present investigation tested the effect of the cleaning method on the tensile bond strength (TBS) between one resin composite cement (RCC) and three different computer aided design/computer aided manufacturing (CAD/CAM) materials, namely zirconia, lithium disilicate ceramic and resin composite. Ninety specimens were prepared from each CAD/CAM material (N = 270). The specimens were pre-treated respectively, divided into five subgroups and subjected to five different cleaning protocols, namely i. 37% phosphoric acid, ii. ethanol, iii. phosphoric acid + ethanol, iv. cleaning paste, v. distilled water. After cleaning, the specimens were either conditioned using a universal primer or a universal adhesive and bonded using a dual-curing RCC. After thermo-cycling (20,000x at 5 °C/55 °C), TBS and fracture patterns were evaluated. The data was analyzed using 1- and 2-way Analysis of Variance (ANOVA) with post-hoc Scheffé and partial eta-squared (ƞP²), Kruskal-Wallis, Mann-Whitney U and Chi2 tests (p < 0.05). The CAD/CAM material showed an impact on the BS while the cleaning protocol did not affect the results. Zirconia obtained the highest BS, followed by lithium-disilicate-ceramic. Resin composite resulted in the overall lowest BS. For most fracture patterns, the cohesive type occurred. All tested cleaning protocols resulted in same BS values within one CAD/CAM material indicating that the impact of the cleaning method for the restorative material seems to play a subordinate role in obtaining durable bond strength to resin composite cement. Further, it indicates that the recommended bonding protocols are well adjusted to the respective materials and might be able to compensate the impact of not accurately performed cleaning protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...