Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(11): 117206, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166573

RESUMO

We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

2.
Magn Reson Chem ; 43 Spec no.: S84-95, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16235218

RESUMO

It is believed by analogy to chloroperoxidase (CPO) from Caldariomyces fumago that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of nitric oxide synthase (NOS) corresponds to an iron(IV) porphyrin-pi -cation radical. Such species can also be produced by the reaction of ferric NOS with external oxidants within the shunt pathway. We present multi-frequency EPR (9.6, 94, 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates of the oxygenase domain of nitric oxide synthase which has reacted with peroxy acetic acid within 8-200 ms. The intermediates of the oxygenase domain of both the cytokine inducible NOS (iNOSox) and the neuronal NOS (nNOSox) show an organic radical signal in the 9.6-GHz spectrum overlapping with the spectrum of an unknown species with g-values of 2.24, 2.23 and 1.96. Using 94- and 285-GHz EPR the organic radical signal is assigned to a tyrosine radical on the basis of g-values (i.e. Tyr*562 in nNOSox and Tyr*341 in iNOSox). Mössbauer spectroscopy of (57)Fe-labeled unreacted nNOSox shows a ferric low-spin heme-iron (delta = 0.38 mms(-1), deltaE(Q) = 2.58 mms(-1)). The reaction of nNOSox with peroxy acetic acid for 8 ms leads to the disappearance of the magnetic background characteristic for native nNOSox and a new species with delta = 0.27 mms(-1) and deltaE(Q) = 2.41 mms(-1) is detected at 4.2 K which does not resemble the parameters typical for a Fe(IV) center. It is proposed that this intermediate species corresponds to a ferric low-spin species which magnetically couples to an amino acid radical (presumably Trp*409).


Assuntos
Óxido Nítrico Sintase/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Congelamento , Estrutura Molecular , Espectroscopia de Mossbauer
3.
J Inorg Biochem ; 91(4): 586-96, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12237224

RESUMO

It is generally assumed that the putative compound I (cpd I) in cytochrome P450 should contain the same electron and spin distribution as is observed for cpd I of peroxidases and catalases and many synthetic cpd I analogues. In these systems one oxidation equivalent resides on the Fe(IV)=O unit (d(4), S=1) and one is located on the porphyrin (S'=1/2), constituting a magnetically coupled ferryl iron-oxo porphyrin pi-cation radical system. However, this laboratory has recently reported detection of a ferryl iron (S=1) and a tyrosyl radical (S'=1/2), via Mössbauer and EPR studies of 8 ms-reaction intermediates of substrate-free P450cam from Pseudomonas putida, prepared by a freeze-quench method using peroxyacetic acid as the oxidizing agent [Schünemann et al., FEBS Lett. 479 (2000) 149]. In the present study we show that under the same reaction conditions, but in the presence of the substrate camphor, only trace amounts of the tyrosine radical are formed and no Fe(IV) is detectable. We conclude that camphor restricts the access of the heme pocket by peroxyacetic acid. This conclusion is supported by the additional finding that binding of camphor and metyrapone inhibit heme bleaching at room temperature and longer reaction times, forming only trace amounts of 5-hydroxy-camphor, the hydroxylation product of camphor, during peroxyacetic acid oxidation. As a control we performed freeze-quench experiments with chloroperoxidase from Caldariomyces fumago using peroxyacetic acid under the identical conditions used for the substrate-free P450cam oxidations. We were able to confirm earlier findings [Rutter et al., Biochemistry 23 (1984) 6809], that an antiferromagnetically coupled Fe(IV)=O porphyrin pi-cation radical system is formed. We conclude that CPO and P450 behave differently when reacting with peracids during an 8-ms reaction time. In P450cam the formation of Fe(IV) is accompanied by the formation of a tyrosine radical, whereas in CPO Fe(IV) formation is accompanied by the formation of a porphyrin radical.


Assuntos
Cânfora 5-Mono-Oxigenase/metabolismo , Cloreto Peroxidase/metabolismo , Ácido Peracético/metabolismo , Sítios de Ligação , Cânfora 5-Mono-Oxigenase/química , Cloreto Peroxidase/química , Clonagem Molecular , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Congelamento , Cinética , Modelos Moleculares , Conformação Proteica , Pseudomonas putida/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Inorg Chem ; 40(21): 5324-33, 2001 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-11578175

RESUMO

Iron complexes of daunorubicin, idarubicin, pirarubicin, and doxorubicin in anhydrous DMF were studied by UV/vis, CD, fluorescence, Mössbauer, and EPR spectroscopy. Titration studies of the metal-free anthracyclines showed one (UV-detectable) deprotonation step requiring 2 equiv of base, compared to 1 equiv for quinizarine. Metal complexation was studied at three different metal/ligand ratios, and with increasing amounts of base. The results obtained from optical spectroscopy show the existence of two different complex species and give clear indications for the requirements of metal complexation. Complex species I, formed at a low iron-to-ligand ratio, is less dependent on base addition than complex species II formed with equimolar ferric ion. EPR and Mössbauer experiments provide further insight into the structures of both complex species. Lack of spin density of the Mössbauer samples in EPR indicates spin coupling between the metal centers. Mössbauer spectra consist of single quadrupole doublets with values typical for high-spin ferric ion in an octahedral arrangement. The Mössbauer spectroscopic features at 7 T exclude the presence of S = 0 dimers. Complex I represents a monomeric ferric iron complex whereas complex II is consistent with a more or less aggregrated oligomeric Fe-anthracycline system.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/análogos & derivados , Compostos Férricos/química , Dicroísmo Circular , Daunorrubicina/química , Dimetilformamida/química , Doxorrubicina/química , Espectroscopia de Ressonância de Spin Eletrônica , Fluorometria , Idarubicina/química , Espectrofotometria Ultravioleta , Espectroscopia de Mossbauer
5.
J Biol Chem ; 276(46): 42881-6, 2001 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-11553635

RESUMO

Adenosine 5'-phosphosulfate reductase (APR) catalyzes the two-electron reduction of adenosine 5'-phosphosulfate to sulfite and AMP, which represents the key step of sulfate assimilation in higher plants. Recombinant APRs from both Lemna minor and Arabidopsis thaliana were overexpressed in Escherichia coli and isolated as yellow-brown proteins. UV-visible spectra of these recombinant proteins indicated the presence of iron-sulfur centers, whereas flavin was absent. This result was confirmed by quantitative analysis of iron and acid-labile sulfide, suggesting a [4Fe-4S] cluster as the cofactor. EPR spectroscopy of freshly purified enzyme showed, however, only a minor signal at g = 2.01. Therefore, Mössbauer spectra of (57)Fe-enriched APR were obtained at 4.2 K in magnetic fields of up to 7 tesla, which were assigned to a diamagnetic [4Fe-4S](2+) cluster. This cluster was unusual because only three of the iron sites exhibited the same Mössbauer parameters. The fourth iron site gave, because of the bistability of the fit, a significantly smaller isomer shift or larger quadrupole splitting than the other three sites. Thus, plant assimilatory APR represents a novel type of adenosine 5'-phosphosulfate reductase with a [4Fe-4S] center as the sole cofactor, which is clearly different from the dissimilatory adenosine 5'-phosphosulfate reductases found in sulfate reducing bacteria.


Assuntos
Proteínas Ferro-Enxofre/química , Magnoliopsida/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Oxirredutases/química , Oxirredutases/fisiologia , Plantas/enzimologia , Sequência de Aminoácidos , Arabidopsis/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/fisiologia , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Espectrofotometria , Espectroscopia de Mossbauer , Enxofre/metabolismo , Fatores de Tempo , Raios Ultravioleta
6.
J Neurochem ; 76(6): 1766-73, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11259494

RESUMO

Information on the molecular distribution and ageing trend of brain iron in post-mortem material from normal subjects is scarce. Because it is known that neuromelanin and ferritin form stable complexes with iron(III), in this study we measured the concentration of iron, ferritin and neuromelanin in substantia nigra from normal subjects, aged between 1 and 90 years, dissected post mortem. Iron levels in substantia nigra were 20 ng/mg in the first year of life, had increased to 200 ng/mg by the fourth decade and remained stable until 90 years of age. The H-ferritin concentration was also very low (29 ng/mg) during the first year of life but increased rapidly to values of approximately 200 ng/mg at 20 years of age, which then remained constant until the eighth decade of life. L-Ferritin also showed an increasing trend during life although the concentrations were approximately 50% less than that of H-ferritin at each age point. Neuromelanin was not detectable during the first year, increased to approximately 1000 ng/mg in the second decade and then increased continuously to 3500 ng/mg in the 80th year. A Mössbauer study revealed that the high-spin trivalent iron is probably arranged in a ferritin-like iron--oxyhydroxide cluster form in the substantia nigra. Based on this data and on the low H- and L-ferritin content in neurones it is concluded that neuromelanin is the major iron storage in substantia nigra neurones in normal individuals.


Assuntos
Envelhecimento/metabolismo , Ferritinas/metabolismo , Ferro/metabolismo , Melaninas/metabolismo , Substância Negra/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Humanos , Lactente , Pessoa de Meia-Idade , Degeneração Neural/metabolismo , Valores de Referência , Substância Negra/crescimento & desenvolvimento , Substância Negra/patologia
7.
Phys Rev Lett ; 86(7): 1351-4, 2001 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-11178081

RESUMO

Nuclear inelastic scattering (NIS) spectra were recorded for a monocrystal of the spin-crossover complex [Fe(tptMetame)] (ClO (4))(2) (tptMetame = 1,1,1-tris([N-(2-pyridylmethyl)-N-methylamino]-methyl)ethane) at T = 30 K (low-spin state) and at room temperature (high-spin state) for different crystal orientations. The high energy resolution (0.65 meV) allowed us to resolve individual molecular vibrations which were unambiguously identified by density functional calculations. From the NIS spectra for the first time the angular-resolved iron-partial density of phonon states (PDOS) was extracted. The PDOS corroborates a vibrational entropy difference as driving force of the spin transition.

8.
Enzyme Microb Technol ; 28(2-3): 168-175, 2001 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11166808

RESUMO

The potential application of lipoxygenase as a versatile biocatalyst in enzyme technology is limited by its poor stability. Two types of soybean lipoxygenases, lipoxygenase-1 and -2 (LOX-1 and LOX-2) were purified by a two step anion exchange chromatography. Four different commercially available supports: CNBr Sepharose 4B, Fractogel((R)) EMD Azlactone, Fractogel((R)) EMD Epoxy, and Eupergit((R)) C were tested for immobilization and stabilization of the purified isoenzymes. Both isoenzymes gave good yields in enzyme activity and good stability after immobilization on CNBr Sepharose 4B and Fractogel((R)) EMD Azlactone. Rapid decay in activity associated with change in the ionization state of Fe, as shown by EPR measurements was observed within the first 5 days after immobilization on epoxy activated supports (Eupergit((R)) C and Fractogel((R)) EMD Epoxy) in high ionic strength buffers. Stabilization of the biocatalyst on these supports was achieved by careful adjustment of the immobilization conditions. When immobilized in phosphate buffer of pH 7.5 and low ionic strength (0.05 M), the half-life time of the immobilized enzyme increased 20 fold. The dependence of the stability of LOX immobilized on epoxy activated supports on the coupling conditions was attributed to a modulation of the ligand environment of the iron in the active site and consequently its reactivity.

10.
FEBS Lett ; 479(3): 149-54, 2000 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-10981725

RESUMO

Freeze-quenched intermediates of substrate-free cytochrome 57Fe-P450(cam) in reaction with peroxy acetic acid as oxidizing agent have been characterized by EPR and Mossbauer spectroscopy. After 8 ms of reaction time the reaction mixture consists of approximately 90% of ferric low-spin iron with g-factors and hyperfine parameters of the starting material; the remaining approximately 10% are identified as a free radical (S' = 1/2) by its EPR and as an iron(IV) (S= 1) species by its Mossbauer signature. After 5 min of reaction time the intermediates have disappeared and the Mossbauer and EPR-spectra exhibit 100% of the starting material. We note that the spin-Hamiltonian analysis of the spectra of the 8 ms reactant clearly reveals that the two paramagnetic species, e.g. the ferryl (iron(IV)) species and the radical, are not exchanged coupled. This led to the conclusion that under the conditions used, peroxy acetic acid oxidized a tyrosine residue (probably Tyr-96) into a tyrosine radical (Tyr*-96), and the iron(III) center of substrate-free P450(cam) to iron(IV).


Assuntos
Cânfora 5-Mono-Oxigenase/metabolismo , Ácido Peracético/metabolismo , Cromatografia por Troca Iônica , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Isótopos de Ferro , Mioglobina/metabolismo , Espectroscopia de Mossbauer , Temperatura , Tirosina/metabolismo
11.
Angew Chem Int Ed Engl ; 38(21): 3181-3183, 1999 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-10556895

RESUMO

Despite similar ring deformations in solution and in the solid state, the chloroiron(III) derivative of 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin ([FeCl(oetpp)], shown schematically) prepared in this study exhibits only a very weak quantum-mechanical admixture of spin S=3/2 (only 4-10 %) with spin S=5/2. In contrast, for the variety of [FeCl(oetpp)] studied earlier by other researchers a 40 % contribution of the S=3/2 state was found.

12.
Angew Chem Int Ed Engl ; 38(21): 3238-3241, 1999 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-10556914

RESUMO

Pythagorean harmony can be found in the spherical polyoxometalate clusters described here (see illustration for an example of a structure), since there are interesting relationships between the so-called magic numbers (12, 32, 42, 72, 132) relevant for spherical viruses and the number of the building blocks in the cluster. The size of these Keplerate clusters can be tailored by varying the type of connections between the pentagons by means of different spacers.

13.
J Biol Inorg Chem ; 4(2): 223-31, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10499095

RESUMO

Full-length human tyrosine hydroxylase 1 (hTH1) and a truncated enzyme lacking the 150 N-terminal amino acids were expressed in Escherichia coli and purified either with or without (6 x histidine) N-terminal tags. After reconstitution with 57Fe(II), the Mössbauer and X-ray absorption spectra of the enzymes were compared before and after dehydration by lyophilization. Before dehydration, > 90% of the iron in hTH1 had Mössbauer parameters typical for high-spin Fe(II) in a six-coordinate environment [isomer shift delta (1.8-77 K) = 1.26-1.24 mm s-1 and quadrupole splitting delta EQ = 2.68 mm s-1]. After dehydration, the Mössbauer spectrum changed and 63% of the area could be attributed to five-coordinate high-spin Fe(II) (delta = 1.07 mm s-1 and delta EQ = 2.89 mm s-1 at 77 K), whereas 28% of the iron remained as six-coordinate high-spin Fe(II) (delta = 1.24 mm s-1 and delta EQ = 2.87 mm s-1 at 77 K). Similar changes upon dehydration were observed for truncated TH either with or without the histidine tag. After rehydration of hTH1 the spectroscopic changes were completely reversed. The X-ray absorption spectra of hTH1 in solution and in lyophilized form, and for the truncated protein in solution, corroborate the findings derived from the Mössbauer spectra. The pre-edge peak intensity of the protein in solution indicates six-coordination of the iron, while that of the dehydrated protein is typical for a five-coordinate iron center. Thus, the active-site iron can exist in different coordination states, which can be interconverted depending on the hydration state of the protein, indicating the presence or absence of a water molecule as a coordinating ligand to the iron. The present study explains the difference in iron coordination determined by X-ray crystallography, which has shown a five-coordinate iron center in rat TH, and by our recent spectroscopic study of human TH in solution, which showed a six-coordinated iron center.


Assuntos
Ferro , Espectroscopia de Mossbauer , Tirosina 3-Mono-Oxigenase/química , Absorciometria de Fóton , Animais , Eletroforese em Gel de Poliacrilamida , Humanos , Conformação Proteica , Ratos , Espectrofotometria Atômica
14.
Biochemistry ; 38(28): 8981-91, 1999 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-10413471

RESUMO

The (57)Fe-enriched cytochrome bf complex has been isolated from hydrocultures of spinach. It has been studied at different redox states by optical, EPR, and Mössbauer spectroscopy. The Mössbauer spectrum of the native complex at 190 K with all iron centers in the oxidized state reveals the presence of four different iron sites: low-spin ferric iron in cytochrome b [with an isomer shift (delta) of 0.20 mm/s, a quadrupole splitting (DeltaE(Q)) of 1.77 mm/s, and a relative area of 40%], low-spin ferric iron of cytochrome f (delta = 0.26 mm/s, DeltaE(Q) = 1.90 mm/s, and a relative area of 20%), and two high-spin ferric iron sites of the Rieske iron-sulfur protein (ISP) with a bis-cysteine and a bis-histidine ligated iron (delta(1) = 0.15 mm/s, DeltaE(Q1) = 0.70 mm/s, and a relative area of 20%, and delta(2) = 0.25 mm/s, DeltaE(Q2) = 0.90 mm/s, and a relative area of 20%, respectively). EPR and magnetic Mössbauer measurements at low temperatures corroborate these results. A crystal-field analysis of the EPR data and of the magnetic Mössbauer data yields estimates for the g-tensors (g(z)(), g(y)(), and g(x)()) of cytochrome b (3.60, 1.35, and 1.1) and of cytochrome f (3.51, 1.69, and 0.9). Addition of ascorbate reduces not only the iron of cytochrome f to the ferrous low-spin state (delta = 0.43 mm/s, DeltaE(Q) = 1.12 mm/s at 4.2 K) but also the bis-histidine coordinated iron of the Rieske 2Fe-2S center to the ferrous high-spin state (delta(2) = 0.73 mm/s, DeltaE(Q2) = -2.95 mm/s at 4.2 K). At this redox step, the Mössbauer parameters of cytochrome b have not changed, indicating that the redox changes of cytochrome f and the Rieske protein did not change the first ligand sphere of the low-spin ferric iron in cytochrome b. Reduction with dithionite further reduces the two hemes of cytochrome b to the ferrous low-spin state (delta = 0.49 mm/s, DeltaE(Q) = 1.08 mm/s at 4.2 K). The spin Hamiltonian analysis of the magnetic Mössbauer spectra at 4.2 K yields hyperfine parameters of the reduced Rieske 2Fe-2S center in the cytochrome bf complex which are very similar to those reported for the Rieske center from Thermus thermophilus [Fee, J. A., Findling, K. L., Yoshida, T., et al. (1984) J. Biol. Chem. 259, 124-133].


Assuntos
Grupo dos Citocromos b/química , Complexo III da Cadeia de Transporte de Elétrons , Proteínas de Plantas/química , Ácido Ascórbico/química , Cromatografia em Gel , Grupo dos Citocromos b/isolamento & purificação , Complexo Citocromos b6f , Dimerização , Ditionita/química , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/química , Substâncias Macromoleculares , Oxirredução , Proteínas de Plantas/isolamento & purificação , Espectrofotometria Ultravioleta , Espectroscopia de Mossbauer , Spinacia oleracea/enzimologia , Temperatura
15.
Biometals ; 12(4): 315-21, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10816731

RESUMO

Transport and metabolization of iron bound to the fungal siderophore rhizoferrin was analyzed by transport kinetics, Mössbauer and EPR spectroscopy. Saturation kinetics (vmax = 24.4 pmol/(mg min), K(m) = 64.4 microM) and energy dependence excluded diffusion and provided evidence for a rhizoferrin transport system in M. smegmatis. Based on the spectroscopic techniques indications for intracellular presence of the ferric rhizoferrin complex were found. This feature could be of practical importance in the search of novel drugs for the treatment of mycobacterial infections. EPR and Mössbauer spectroscopy revealed different ferritin mineral cores depending on the siderophore iron source. This finding was interpreted in terms of different protein shells, i.e. two types of ferritins.


Assuntos
Compostos Férricos/metabolismo , Ferro/metabolismo , Mycobacterium smegmatis/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Sideróforos/metabolismo , Espectroscopia de Mossbauer
16.
J Biol Inorg Chem ; 4(6): 708-16, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10631602

RESUMO

A model heme complex, bis(3-aminopyrazole)tetraphenylporphinatoiron(III) chloride, [TPPFe (NH2PzH)2]Cl, for which the EPR g-values lead to a rhombicity V/delta = 1.2 if gzz is the largest g-value, have been investigated by electron spin echo envelope modulation (ESEEM) and Mössbauer spectroscopies. The ESEEM studies focus on the proton sum frequency peaks at near twice the proton Larmor frequency. Analysis of the distant proton peak (mainly due to the pyrrole-H) at exactly twice the proton Larmor frequency shows conclusively that gzz is aligned along the normal to the porphyrin plane, and thus the electron configuration is (dxy)2(dxz,dyz)3, with gzz > gyy > gxx. This system is thus another violation to Taylor's "proper axis system" rule. The near proton (the alpha-H and N-H of the axial ligands) peaks provide distance information for those protons from the metal. Magnetic Mössbauer studies of the same complex confirm the (dxy)2(dxz,dyz)3 ground state and indicate that, as is the case for cytochrome P450cam, Axx is the largest magnitude A-value, and is negative in sign. Other low-spin iron(III) porphyrinates also have Axx of negative sign, but usually the magnitude is only about half that of Azz, which is always positive in sign.


Assuntos
Compostos Férricos/química , Metaloporfirinas/química , Modelos Químicos , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Espectroscopia de Mossbauer
17.
Eur J Biochem ; 258(3): 1001-8, 1998 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9990318

RESUMO

We previously used fhuF as a sensitive reporter gene of the iron status of Escherichia coli. In this report, the fhuF gene was identified as open reading frame f262b at 99.2 min on the genome sequence map of E. coli K-12. The FhuF protein was labeled with a His-tag and then purified to electrophoretic homogeneity. Based on sulfur determinations and Mössbauer and EPR spectroscopy, FhuF was identified as a [2Fe-2S] protein. The g values (gx = 1.886, gy = 1.961, gz = 1.994) and some of the Mössbauer parameters of FhuF obtained [oxidized protein as isolated: delta EQ,4.2K = 0.474 mm s-1; Fe3+ (reduced protein): delta EQ = 0.978 mm s-1] are not typical of common [2Fe-2S] proteins and indicate that FhuF has unusual structural properties. The primary sequence of FhuF does not show any sequence similarities to known [2Fe-2S] proteins. By site-directed mutagenesis, each of the six cysteines of FhuF was replaced by serine. EPR of the six reduced mutant proteins revealed that the terminal cysteine residues 244, 245, 256, and 259 form the [2Fe-2S]Cys4 cluster. Mutants having the Cys-to-Ser replacement at positions 244, 245, 256, or 259 did not complement a fhuF mutant. The motif Cys-Cys-Xaa10-Cys-Xaa2-Cys in FhuF differs considerably from the motif Cys-Xaa2-Cys-Xaa9-15-Cys-Xaa2-Cys found in other [2Fe-2S] proteins. The unusual Cys-Cys terminal group of the cluster may explain the atypical EPR and Mössbauer spectroscopic properties of the FhuF protein; possibly the tetrahedral symmetry at the ferric ion site is distorted. The phenotype of fhuF mutants and the structural features of the FhuF protein suggest that FhuF is involved in the reduction of ferric iron in cytoplasmic ferrioxamine B.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/química , Proteínas Ferro-Enxofre/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Ligação ao Ferro , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/isolamento & purificação , Proteínas Ferro-Enxofre/metabolismo , Ligantes , Dados de Sequência Molecular , Proteínas Periplásmicas de Ligação , Análise de Sequência de DNA , Espectroscopia de Mossbauer
18.
Biometals ; 10(3): 193-203, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9243798

RESUMO

Growth promotion was tested using M. smegmatis wild type strain, an exochelin-deficient mutant, and M. fortuitum employing a broad variety of xenosiderophores including hydroxamates, catecholates and alpha-hydroxy carboxylic acids. The experiments revealed that utilization of siderophore-bound iron is substrate specific suggesting high-affinity siderophore receptor and transport systems. Concentration-dependent uptake of a selected xenosiderophore (fericrocin) in M. smegmatis showed saturation kinetics and uptake was inhibited by respiratory poisons. In situ Mössbauer spectroscopy of ferricrocin uptake in M. smegmatis indicated rapid intracellular reductive removal of the metal excluding intracellular ferricrocin accumulation. The ultimate intracellular iron pool is represented by a compound (delta = 0.43 mm s-1, delta EQ = 1.03 mm s-1) which has also been found in many other microorganisms and does not represent a bacterioferritin, cytochrome or iron-sulfur cluster. By contrast, iron uptake via citrate-a compound exhibiting a very low complex stability constant-involves ligand exchange with mycobactin. Mycobactin has merely a transient role. The ultimate storage compound is an E. coli-type bacterioferritin, in which over 90% of cellular iron is located.


Assuntos
Proteínas da Membrana Bacteriana Externa , Ferro/metabolismo , Micobactérias não Tuberculosas/metabolismo , Receptores de Superfície Celular/metabolismo , Sideróforos/farmacologia , Ligação Competitiva , Transporte Biológico Ativo , Citratos/metabolismo , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância de Spin Eletrônica , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Oxirredução , Receptores de Superfície Celular/efeitos dos fármacos , Sideróforos/metabolismo , Espectroscopia de Mossbauer , Especificidade por Substrato
19.
Inorg Chem ; 36(20): 4555-4566, 1997 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-11670121

RESUMO

The tetraaza macrocycles 2-oxa-3-oxotetramesitylporphine (|H(2) 1|) and 2-oxa-3-oxotetrakis(2,6-dichlorophenyl)porphine (|H(2) 2|) and the corresponding iron complexes (|Fe(III)(X) 1| and |Fe(III)(X) 2|; X= Cl(-), OH(-), or SO(3)CF(3)(-)) have been synthesized. These macrocycles are derived from porphyrins by transformation of one pyrrole ring to an oxazolone ring. The resulting lactone functionality serves to restrict but not completely block pi-conjugation around the periphery. These complexes thus share properties with both porphyrins and chlorins. The ferric and high-valent iron complexes have been characterized by a variety of spectroscopic techniques. The molecular structure of |Fe(III)(Cl) 2| has been obtained by X-ray crystallography and shows that the structural changes at the macrocycle periphery do not perturb the coordination sphere of iron relative to the corresponding porphyrin complexes. This is illustrated by the observation that Fe-O frequencies in the resonance Raman spectra of the porpholactone analogues of compounds I and II are not substantially different from those of porphyrins and by the axial appearance of the EPR signals of the high-spin ferric complexes. This is consistent with reports that the Fe=O unit of oxidized porphyrins and chlorins is relatively insensitive to alteration of macrocycle symmetry. Nevertheless, probes of properties of the porpholactone macrocycle ((1)H NMR, resonance Raman skeletal modes) show effects of the asymmetry induced by the oxazolone ring. On the basis of (1)H NMR, EPR, Mössbauer, and resonance Raman data, the singly occupied molecular orbital of oxoferryl porpholactone pi-cation radicals correlates with the a(1u) molecular orbital of porphyrins under D(4)(h)() symmetry. Moreover, the paramagnetic properties and the intramolecular exchange interaction of ferryl iron and the porpholactone pi-radical have been characterized by EPR and magnetic Mössbauer measurements and spin-Hamiltonian analyses. The values J(0) = 17 cm(-)(1) and J(0) = 11 cm(-)(1) obtained for the exchange coupling constants of the oxoferryl porpholactone pi-cation radical complexes |Fe(IV)=O 1|(+) and |Fe(IV)=O 2|(+), respectively, are among the lowest found for synthetic compound I analogues.

20.
Eur J Biochem ; 241(2): 432-9, 1996 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-8917440

RESUMO

Isoforms (1-4) of human tyrosine hydroxylase (TH) have been expressed in Escherichia coli and purified as apoenzymes (metal-free). Apo-human TH binds 1.0 atom Fe(II)/enzyme subunit, and iron binding is associated with an immediate and dramatic (40-fold) increase in specific activity. For X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) measurements the apoenzyme was reconstituted with 56Fe and for Mössbauer measurements with 57Fe. XAFS measurements at the Fe-K edge of human TH were performed on the native form [Fe(II)-human TH], as well as after addition of stoichiometric amounts of the substrate tetrahydropterin, the inhibitor dopamine and of H2O2. The addition of dopamine or H2O2 oxidizes the ferrous iron of the native human TH to the ferric state. In both redox states the iron is octahedrally coordinated by low-Z backscatterers, thus sulfur coordination can be excluded. From the multiple scattering analysis of the EXAFS region is was surmised that part of the iron coordination is due to (3 +/- 1) imidazols. Addition of tetrahydropterin does not significantly change the iron coordination of the Fe(II) enzyme. The Mössbauer results confirm the valence states and the octahedral coordination of iron as well as the exclusion of sulfur ligation. Both the EPR spectra and the Mössbauer magnetic hyperfine pattern of dopamine- and H2O2-treated native human TH, were analyzed with the spin-Hamiltonian formalism. This analysis provides significantly different features for the two forms of human TH: the ferric iron (S = 5/2) of the H2O2-treated form exhibits a rhombic environment while that of the dopamine-treated form exhibits near-axial symmetry. The specific spectroscopic signature of dopamine-treated human TH, including that of an earlier resonance-Raman study [Michaud-Soret, I., Andersson, K. K., Que, L. Jr & Haavik, J. (1995) Biochemistry 34, 5504-5510] is most likely due to the bidentate binding of dopamine to iron.


Assuntos
Tirosina 3-Mono-Oxigenase/química , Sítios de Ligação , Catecóis , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Humanos , Ferro/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Pterinas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectroscopia de Mossbauer , Análise Espectral , Especificidade por Substrato , Tirosina 3-Mono-Oxigenase/genética , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...