Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 103(5-1): 053203, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134330

RESUMO

Molecular dynamics simulations of binary dusty plasmas have been performed and their behavior with respect to the phase separation process has been analyzed. The simulated system was inspired by experimental research on phase separation in dusty plasmas under microgravity on parabolic flights. Despite vortex formation in the experiment and in the simulations the phase separation could be identified. From the simulations it is found that even the smallest charge disparities lead to phase separation. The separation is due to the force imbalance on the two species and the separation becomes weaker with increasing mean particle size. In comparison, experiments on the phase separation have been performed and analyzed in view of the separation dynamics. It is found that the experimental results are reproduced by the simulation regarding the dependency on the size disparity of the two particle species.

2.
Phys Rev E ; 101(4-1): 043213, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422821

RESUMO

Three-dimensionally extended dusty plasmas containing mixtures of two particle species of different size have been investigated under microgravity conditions. To distinguish the species even at small size disparities, one of the species is marked with a fluorescent dye, and a modified two-camera video microscopy setup is used for position determination and tracking. Phase separation is found even when the size disparity is below 5%. Particles are tracked to obtain the diffusion flux, and resulting diffusion coefficients are calculated to be about -10^{-6}mm^{2}/s, which is in the expected range for a phase separation process driven by plasma forces. Additionally, a measure for the strength of the phase separation is presented that allows us to quickly characterize measurements. There is a clear correlation between size disparity and phase separation strength.

3.
Phys Rev Lett ; 116(11): 115002, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035305

RESUMO

The phase separation in binary mixtures of charged particles has been investigated in a dusty plasma under microgravity on parabolic flights. A method based on the use of fluorescent dust particles was developed that allows us to distinguish between particles of slightly different size. A clear trend towards phase separation even for smallest size (charge) disparities is observed. The diffusion flux is directly measured from the experiment and uphill diffusion coefficients have been determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...