Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(26): e202400350, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38602024

RESUMO

Macrocycles offer an attractive format for drug development due to their good binding properties and potential to cross cell membranes. To efficiently identify macrocyclic ligands for new targets, methods for the synthesis and screening of large combinatorial libraries of small cyclic peptides were developed, many of them using thiol groups for efficient peptide macrocyclization. However, a weakness of these libraries is that invariant thiol-containing building blocks such as cysteine are used, resulting in a region that does not contribute to library diversity but increases molecule size. Herein, we synthesized a series of structurally diverse thiol-containing elements and used them for the combinatorial synthesis of a 2,688-member library of small, structurally diverse peptidic macrocycles with unprecedented skeletal complexity. We then used this library to discover potent thrombin and plasma kallikrein inhibitors, some also demonstrating favorable membrane permeability. X-ray structure analysis of macrocycle-target complexes showed that the size and shape of the newly developed thiol elements are key for binding. The strategy and library format presented in this work significantly enhance structural diversity by allowing combinatorial modifications to a previously invariant region of peptide macrocycles, which may be broadly applied in the development of membrane permeable therapeutics.


Assuntos
Compostos Macrocíclicos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Humanos , Permeabilidade da Membrana Celular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/metabolismo , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/metabolismo , Trombina/metabolismo , Trombina/antagonistas & inibidores , Trombina/química , Cristalografia por Raios X , Compostos de Sulfidrila/química , Modelos Moleculares
2.
J Pept Sci ; 30(4): e3555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220145

RESUMO

Newer solid-phase peptide synthesis and release strategies enable the production of short peptides with high purity, allowing direct screening for desired bioactivity without prior chromatographic purification. However, the maximum number of peptides that can currently be synthesized per microplate reactor is 96, allowing the parallel synthesis of 384 peptides in modern devices that have space for 4 microplate reactors. To synthesize larger numbers of peptides, we modified a commercially available peptide synthesizer to enable the production of peptides in 384-well plates, which allows the synthesis of 1,536 peptides in one run (4 × 384 peptides). We report new hardware components and customized software that allowed for the synthesis of 1,536 short peptides in good quantity (average > 0.5 µmol), at high concentration (average > 10 mM), and decent purity without purification (average > 80%). The high-throughput peptide synthesis, which we developed with peptide drug development in mind, may be widely used for peptide library synthesis and screening, antibody epitope scanning, epitope mimetic development, or protease/kinase substrate screening.


Assuntos
Técnicas de Química Combinatória , Técnicas de Síntese em Fase Sólida , Técnicas de Química Combinatória/métodos , Biblioteca de Peptídeos , Peptídeos/química , Epitopos
3.
Chembiochem ; 25(3): e202300592, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047532

RESUMO

Tris-(2-carboxyethyl)phosphine (TCEP) linked to agarose beads is widely used for reducing disulfide bridges in proteins and peptides. The immobilization of TCEP on beads allows efficient removal after reduction to prevent its reaction with alkylating reagents and thus interference with conjugation reactions. However, a limitation of agarose TCEP is its relatively low reduction capacity per milliliter of wet beads (about 15 µmol/ml), making it unsuitable for the reduction of disulfides from molecules at millimolar concentrations. In this work, we tested the immobilization of TCEP to a range of different solid supports and found that conjugation to silica gel offers TCEP beads with about 8-fold higher reduction capacity (129±16 µmol/ml wet beads). We show that it allows reducing disulfide-cyclized peptides at millimolar concentrations for subsequent cyclization by bis-electrophile linker reagents. Given the substantially higher reduction capacity, the robust performance in different solvents, the low cost of the silica gel, and the ease of functionalization with TCEP, the silica gel-TCEP is suited for reducing disulfide bridges in essentially any peptide and is particularly useful for reducing peptides at higher concentrations.


Assuntos
Fosfinas , Dióxido de Silício , Compostos de Sulfidrila , Sefarose , Sílica Gel , Peptídeos/química , Indicadores e Reagentes , Alquilação , Dissulfetos/química , Oxirredução
4.
Nat Commun ; 13(1): 3823, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780129

RESUMO

Macrocycles have excellent potential as therapeutics due to their ability to bind challenging targets. However, generating macrocycles against new targets is hindered by a lack of large macrocycle libraries for high-throughput screening. To overcome this, we herein established a combinatorial approach by tethering a myriad of chemical fragments to peripheral groups of structurally diverse macrocyclic scaffolds in a combinatorial fashion, all at a picomole scale in nanoliter volumes using acoustic droplet ejection technology. In a proof-of-concept, we generate a target-tailored library of 19,968 macrocycles by conjugating 104 carboxylic-acid fragments to 192 macrocyclic scaffolds. The high reaction efficiency and small number of side products of the acylation reactions allowed direct assay without purification and thus a large throughput. In screens, we identify nanomolar inhibitors against thrombin (Ki = 44 ± 1 nM) and the MDM2:p53 protein-protein interaction (Kd MDM2 = 43 ± 18 nM). The increased efficiency of macrocycle synthesis and screening and general applicability of this approach unlocks possibilities for generating leads against any protein target.


Assuntos
Ciclização , Fenômenos Biofísicos
5.
J Med Chem ; 65(14): 9735-9749, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35653695

RESUMO

Kallikrein-related peptidases 5 (KLK5) and 7 (KLK7) are serine proteases with homeostatic functions in the epidermis that play a critical role in Netherton syndrome (NS), a rare yet life-threatening genetic disorder that currently lacks specific treatment. Previous research suggests that controlling KLKs could lead to the development of NS therapies, but existing synthetic inhibitors have limitations. Herein, we used phage display to screen libraries comprising more than 100 billion different cyclic peptides and found selective, high-affinity inhibitors of KLK5 (Ki = 2.2 ± 0.1 nM) and KLK7 (Ki = 16 ± 4 nM). By eliminating protease-prone sites and conjugating the inhibitors to an albumin-binding peptide, we enhanced the inhibitor stability and prolonged the elimination half-life to around 5 h in mice. In tissue sections taken from mice, a fluorescently labeled peptide was detected in the epidermis, suggesting that the inhibitors can reach the KLKs upon systemic delivery and should be suited to control deregulated protease activity in NS.


Assuntos
Bacteriófagos , Síndrome de Netherton , Animais , Calicreínas , Camundongos , Síndrome de Netherton/genética , Peptídeos , Peptídeos Cíclicos/farmacologia
6.
ACS Chem Biol ; 17(1): 181-186, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35015522

RESUMO

The synthesis of large numbers of cyclic peptides─required, for example, in screens for drug development─is currently limited by the need of chromatographic purification of individual peptides. Herein, we have developed a strategy in which cyclic peptides are released from the solid phase in the pure form and do not need purification. Peptides with an N-terminal thiol group are synthesized on the solid phase via a C-terminal disulfide linker, their sidechain-protecting groups are removed while the peptides remain on the solid phase, and the peptides are finally released via a cyclative mechanism by the addition of a base that deprotonates the N-terminal thiol group and triggers an intramolecular disulfide-exchange reaction. The method yields disulfide-cyclized peptides, a format on which many important peptide drugs such as oxytocin, vasopressin, and octreotide are based. We demonstrate that the method is applicable for facile synthesis in 96-well plates and allows for synthesis and screening of hundreds of cyclic peptides.


Assuntos
Técnicas de Química Combinatória/métodos , Peptídeos Cíclicos/síntese química , Bibliotecas de Moléculas Pequenas , Sequência de Aminoácidos , Ciclização
7.
Angew Chem Int Ed Engl ; 60(40): 21702-21707, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34268864

RESUMO

Macrocyclic compounds are an attractive class of therapeutic ligands against challenging targets, such as protein-protein interactions. However, the development of macrocycles as drugs is hindered by the lack of large combinatorial macrocyclic libraries, which are cumbersome, expensive, and time consuming to make, screen, and deconvolute. Here, we established a strategy for synthesizing and screening combinatorial libraries on a picomolar scale by using acoustic droplet ejection to combine building blocks at nanoliter volumes, which reduced the reaction volumes, reagent consumption, and synthesis time. As a proof-of-concept, we assembled a 2700-member target-focused macrocyclic library that we could subsequently assay in the same microtiter synthesis plates, saving the need for additional transfers and deconvolution schemes. We screened the library against the MDM2-p53 protein-protein interaction and generated micromolar and sub-micromolar inhibitors. Our approach based on acoustic liquid transfer provides a general strategy for the development of macrocycle ligands.


Assuntos
Compostos Macrocíclicos/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Acústica , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Inorg Chem ; 57(23): 15009-15022, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30444120

RESUMO

Azobenzene has become a ubiquitous component of functional molecules and polymeric materials because of the light-induced trans → cis isomerization of the diazene group. In contrast, there are very few applications utilizing azobenzene luminescence, since the excitation energy typically dissipates via nonradiative pathways. Inspired by our earlier studies with 2,2'-bis[ N,N'-(2-pyridyl)methyl]diaminoazobenzene (AzoAM oP) and related compounds, we investigated a series of five aminoazobenzene derivatives and their corresponding silver complexes. Four of the aminoazobenzene ligands, which exhibit no emission under ambient conditions, form silver coordination polymers that are luminescent at room temperature. AzoAE pP (2,2'-bis[ N,N'-(4-pyridyl)ethyl]diaminoazobenzene) assembles into a three-dimensional coordination polymer (AgAAE pP) that undergoes a reversible loss of emission upon the addition of metal-coordinating analytes such as pyridine. The switching behavior is consistent with the disassembly and reassembly of the coordination polymer driven by displacement of the aminoazobenzene ligands by coordinating analytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...