Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888895

RESUMO

We present a multiresonant vibration energy harvester designed for ultra-low-power applications in industrial environments together with an optimized harvester design. The proposed device features dual-frequency operation, enabling the harvesting of energy over a wider operational frequency range. It has been designed such that its harvesting bandwidth range is [50, 100] Hz, which is a typical frequency range for vibrations found in industrial applications. At an excitation level of 0.5 g, a maximum mean power output of 6 mW and 9 mW can be expected at the resonance frequencies of 63.3 and 76.4 Hz, respectively. The harvester delivers a power density of 492 µW/cm2. Design optimization led to improved harvester geometries yielding up to 2.6 times closer resonance frequencies, resulting in a wider harvesting bandwidth and a significantly higher power output.

2.
Micromachines (Basel) ; 11(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947540

RESUMO

In this paper, we present a macroscale multiresonant vibration-based energy harvester. The device features frequency tunability through magnetostatic actuation on the resonator. The magnetic tuning scheme uses external magnets on linear stages. The system-level model demonstrates autonomous adaptation of resonance frequency to the dominant ambient frequencies. The harvester is designed such that its two fundamental modes appear in the range of (50,100) Hz which is a typical frequency range for vibrations found in industrial applications. The dual- frequency characteristics of the proposed design together with the frequency agility result in an increased operative harvesting frequency range. In order to allow a time-efficient simulation of the model, a reduced order model has been derived from a finite element model. A tuning control algorithm based on maximum-voltage tracking has been implemented in the model. The device was characterized experimentally to deliver a power output of 500 µW at an excitation level of 0.5 g at the respected frequencies of 63.3 and 76.4 Hz. In a design optimization effort, an improved geometry has been derived. It yields more close resonance frequencies and optimized performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...