Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1352794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686117

RESUMO

As a solution to restore knee function and reduce pain, the demand for Total Knee Arthroplasty (TKA) has dramatically increased in recent decades. The high rates of dissatisfaction and revision makes it crucially important to understand the relationships between surgical factors and post-surgery knee performance. Tibial implant alignment in the sagittal plane (i.e., posterior tibia slope, PTS) is thought to play a key role in quadriceps muscle forces and contact conditions of the joint, but the underlying mechanisms and potential consequences are poorly understood. To address this biomechanical challenge, we developed a subject-specific musculoskeletal model based on the bone anatomy and precise implantation data provided within the CAMS-Knee datasets. Using the novel COMAK algorithm that concurrently optimizes joint kinematics, together with contact mechanics, and muscle and ligament forces, enabled highly accurate estimations of the knee joint biomechanics (RMSE <0.16 BW of joint contact force) throughout level walking and squatting. Once confirmed for accuracy, this baseline modelling framework was then used to systematically explore the influence of PTS on knee joint biomechanics. Our results indicate that PTS can greatly influence tibio-femoral translations (mainly in the anterior-posterior direction), while also suggesting an elevated risk of patellar mal-tracking and instability. Importantly, however, an increased PTS was found to reduce the maximum tibio-femoral contact force and improve efficiency of the quadriceps muscles, while also reducing the patellofemoral contact force (by approximately 1.5% for each additional degree of PTS during walking). This study presents valuable findings regarding the impact of PTS variations on the biomechanics of the TKA joint and thereby provides potential guidance for surgically optimizing implant alignment in the sagittal plane, tailored to the implant design and the individual deficits of each patient.

2.
Elife ; 122023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37159500

RESUMO

Background: Postoperative knee instability is one of the major reasons accounting for unsatisfactory outcomes, as well as a major failure mechanism leading to total knee arthroplasty (TKA) revision. Nevertheless, subjective knee instability is not well defined clinically, plausibly because the relationships between instability and implant kinematics during functional activities of daily living remain unclear. Although muscles play a critical role in supporting the dynamic stability of the knee joint, the influence of joint instability on muscle synergy patterns is poorly understood. Therefore, this study aimed to understand the impact of self-reported joint instability on tibiofemoral kinematics and muscle synergy patterns after TKA during functional gait activities of daily living. Methods: Tibiofemoral kinematics and muscle synergy patterns were examined during level walking, downhill walking, and stair descent in eight self-reported unstable knees after TKA (3M:5F, 68.9 ± 8.3 years, body mass index [BMI] 26.1 ± 3.2 kg/m2, 31.9 ± 20.4 months postoperatively), and compared against 10 stable TKA knees (7M:3F, 62.6 ± 6.8 years, 33.9 ± 8.5 months postoperatively, BMI 29.4 ± 4.8 kg/m2). For each knee joint, clinical assessments of postoperative outcome were performed, while joint kinematics were evaluated using moving video-fluoroscopy, and muscle synergy patterns were recorded using electromyography. Results: Our results reveal that average condylar A-P translations, rotations, as well as their ranges of motion were comparable between stable and unstable groups. However, the unstable group exhibited more heterogeneous muscle synergy patterns and prolonged activation of knee flexors compared to the stable group. In addition, subjects who reported instability events during measurement showed distinct, subject-specific tibiofemoral kinematic patterns in the early/mid-swing phase of gait. Conclusions: Our findings suggest that accurate movement analysis is sensitive for detecting acute instability events, but might be less robust in identifying general joint instability. Conversely, muscle synergy patterns seem to be able to identify muscular adaptation associated with underlying chronic knee instability. Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.


Assuntos
Artroplastia do Joelho , Instabilidade Articular , Humanos , Artroplastia do Joelho/efeitos adversos , Artroplastia do Joelho/métodos , Atividades Cotidianas , Fenômenos Biomecânicos/fisiologia , Instabilidade Articular/etiologia , Autorrelato
3.
J Biomech ; 151: 111549, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36948000

RESUMO

Patellar complications frequently limit the success of total knee arthroplasty. In addition to the musculoskeletal forces themselves, patellar tendon elastic properties are essential for driving patellar loading. Elastic properties reported in the literature exhibit high variability and appear to differ according to the methodologies used. Specifically in total knee arthroplasty patients, only limited knowledge exists on in vivo elastic properties and their corresponding loads. For the first time, we report stiffness, Young's modulus, and forces of the patellar tendon, derived from four patients with telemetric total knee arthroplasties using a combined imaging and measurement approach. To achieve this, synchronous in vivo telemetric assessment of tibio-femoral contact forces and fluoroscopic assessment of knee kinematics, along with full body motion capture and ground reaction forces, fed musculoskeletal multi-body models to quantify patellar tendon loading and elongation. Mechanical patellar tendon properties were calculated during a squat and a sit-stand-sit activity, with resulting tendon stiffness and Young's modulus ranging from 511 to 1166 N/mm and 259 to 504 MPa, respectively. During these activities, the patellar tendon force reached peak values between 1.31 and 2.79 bodyweight, reaching levels of just âˆ¼0.5 bodyweight below the tibio-femoral forces. The results of this study provide valuable input data for mechanical simulations of the patellar tendon and the whole resurfaced knee.


Assuntos
Artroplastia do Joelho , Ligamento Patelar , Humanos , Fenômenos Biomecânicos , Articulação do Joelho , Tendões , Artroplastia do Joelho/métodos , Módulo de Elasticidade
4.
J Biomech ; 144: 111306, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183494

RESUMO

While there is general agreement on the transverse plane knee joint motion for loaded flexion activities, its kinematics during functional movements such as level walking are discussed more controversially. One possible cause of this controversy could originate from the interpretation of kinematics based on different analysis approaches. In order to understand the impact of these approaches on the interpretation of tibio-femoral motion, a set of dynamic videofluoroscopy data presenting continuous knee bending and complete cycles of walking in ten subjects was analysed using six different kinematic analysis approaches. Use of a functional flexion axis resulted in significantly smaller ranges of condylar translation compared to anatomical axes and contact approaches. All contact points were located significantly more anteriorly than the femur fixed axes after 70° of flexion, but also during the early/mid stance and late swing phases of walking. Overall, a central to medial transverse plane centre of rotation was found for both activities using all six kinematic analysis approaches, although individual subjects exhibited lateral centres of rotation using certain approaches. The results of this study clearly show that deviations from the true functional axis of rotation result in kinematic crosstalk, suggesting that functional axes should be reported in preference to anatomical axes. Contact approaches, on the other hand, can present additional information on the local tibio-femoral contact conditions. To allow a more standardised comparison and interpretation of tibio-femoral kinematics, results should therefore be reported using at least a functionally determined axis and possibly also a contact point approach.


Assuntos
Fêmur , Prótese do Joelho , Humanos , Fenômenos Biomecânicos , Articulação do Joelho , Amplitude de Movimento Articular , Tíbia
5.
J Clin Med ; 11(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079016

RESUMO

An improved understanding of the relationships between bone morphology and in vivo tibio-femoral kinematics potentially enhances functional outcomes in patients with knee disorders. The aim of this study was to quantify the influence of femoral and tibial bony morphology on tibio-femoral kinematics throughout complete gait cycles in healthy subjects. Twenty-six volunteers underwent clinical examination, radiographic assessment, and dynamic video-fluoroscopy during level walking, downhill walking, and stair descent. Femoral computer-tomography (CT) measurements included medial condylar (MC) and lateral condylar (LC) width, MC and LC flexion circle, and lateral femoral condyle index (LFCI). Tibial CT measurements included both medial (MTP) and lateral tibial plateau (LTP) slopes, depths, lengths, and widths. The influence of bony morphology on tibial internal/external rotation and anteroposterior (AP)-translation of the lateral and medial compartments were analyzed in a multiple regression model. An increase in tibial internal/external rotation could be demonstrated with decreasing MC width ß: -0.30 (95% CI: -0.58 to -0.03) (p = 0.03) during the loaded stance phase of level walking. An increased lateral AP-translation occurred with both a smaller LC flexion circle ß: -0.16 (95% CI: -0.28 to -0.05) (p = 0.007) and a deeper MTP ß: 0.90 (95% CI: 0.23 to 1.56) (p = 0.01) during the loaded stance phase of level walking. The identified relationship between in vivo tibio-femoral kinematics and bone morphology supports a customized approach and individual assessment of these factors in patients with knee disorders and potentially enhances functional outcomes in anterior cruciate ligament injuries and total knee arthroplasty.

6.
J Biomech ; 141: 111171, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803037

RESUMO

Knowledge of both tibio-femoral kinematics and kinetics is necessary for fully understanding knee joint biomechanics, guiding implant design and testing, and driving and validating computational models. In 2017, the CAMS-Knee datasets were presented, containing synchronized in vivo implant kinematics measured using a moving fluoroscope and tibio-femoral contact loads measured using instrumented implants from six subjects. However, to date, no representative summary of kinematics and kinetics obtained from measurements at the joint level of the same cohort of subjects exists. In this study, we present the CAMS-Knee standardized subject "Stan", whose reference data include tibio-femoral kinematics and loading scenarios from all six subjects for level and downhill walking, stair descent, squat and sit-to-stand-to-sit. Using the peak-preserving averaging method by Bergmann and co-workers, we derived scenarios for generally high (CAMS-HIGH100), peak, and extreme loading. The CAMS-HIGH100 axial forces reached peaks between 3022 and 3856 N (3.08-3.93 body weight) for the five investigated activities. Anterior-posterior forces were about a factor of ten lower. The axial moment around the tibia was highest for level walking and squatting with peaks of 9.4 Nm and 10.5 Nm acting externally. Internal tibial rotations of up to 8.4° were observed during squat and sitting, while the walking activities showed approximately half the internal rotation. The CAMS-HIGH100 loads were comparable to Bergmann and co-workers', but have the additional benefit of synchronized kinematics. Stan's loads are +11 to +56% higher than the ISO 14243 wear testing standard loads, while the kinematics exhibit markedly different curve shapes. Along with the original CAMS-Knee datasets, Stan's data can be requested at cams-knee.orthoload.com.


Assuntos
Distinções e Prêmios , Prótese do Joelho , Fenômenos Biomecânicos , Fêmur , Humanos , Articulação do Joelho , Tíbia
7.
PLoS One ; 17(6): e0270596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749482

RESUMO

Measuring joint kinematics is a key requirement for a plethora of biomechanical research and applications. While x-ray based systems avoid the soft-tissue artefacts arising in skin-based measurement systems, extracting the object's pose (translation and rotation) from the x-ray images is a time-consuming and expensive task. Based on about 106'000 annotated images of knee implants, collected over the last decade with our moving fluoroscope during activities of daily living, we trained a deep-learning model to automatically estimate the 6D poses for the femoral and tibial implant components. By pretraining a single stage of our architecture using renderings of the implant geometries, our approach offers personalised predictions of the implant poses, even for unseen subjects. Our approach predicted the pose of both implant components better than about 0.75 mm (in-plane translation), 25 mm (out-of-plane translation), and 2° (all Euler-angle rotations) over 50% of the test samples. When evaluating over 90% of test samples, which included heavy occlusions and low contrast images, translation performance was better than 1.5 mm (in-plane) and 30 mm (out-of-plane), while rotations were predicted better than 3-4°. Importantly, this approach now allows for pose estimation in a fully automated manner.


Assuntos
Articulação do Joelho , Prótese do Joelho , Atividades Cotidianas , Fenômenos Biomecânicos , Fluoroscopia/métodos , Humanos , Articulação do Joelho/diagnóstico por imagem , Redes Neurais de Computação
8.
Front Bioeng Biotechnol ; 10: 808027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721846

RESUMO

Understanding the sources of error is critical before models of the musculoskeletal system can be usefully translated. Using in vivo measured tibiofemoral forces, the impact of uncertainty in muscle-tendon parameters on the accuracy of knee contact force estimates of a generic musculoskeletal model was investigated following a probabilistic approach. Population variability was introduced to the routine musculoskeletal modeling framework by perturbing input parameters of the lower limb muscles around their baseline values. Using ground reaction force and skin marker trajectory data collected from six subjects performing body-weight squat, the knee contact force was calculated for the perturbed models. The combined impact of input uncertainties resulted in a considerable variation in the knee contact force estimates (up to 2.1 BW change in the predicted force), especially at larger knee flexion angles, hence explaining up to 70% of the simulation error. Although individual muscle groups exhibited different contributions to the overall error, variation in the maximum isometric force and pathway of the muscles showed the highest impacts on the model outcomes. Importantly, this study highlights parameters that should be personalized in order to achieve the best possible predictions when using generic musculoskeletal models for activities involving deep knee flexion.

9.
Clin Biomech (Bristol, Avon) ; 96: 105667, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35636308

RESUMO

BACKGROUND: A comparison of natural versus replaced tibio-femoral kinematics in vivo during challenging activities of daily living can help provide a detailed understanding of the mechanisms leading to unsatisfactory results and lay the foundations for personalised implant selection and surgical implantation, but also enhance further development of implant designs towards restoring physiological knee function. The aim of this study was to directly compare in vivo tibio-femoral kinematics in natural versus replaced knees throughout complete cycles of different gait activities using dynamic videofluoroscopy. METHODS: Twenty-seven healthy and 30 total knee replacement subjects (GMK Sphere, GMK PS, GMK UC) were assessed during multiple complete gait cycles of level walking, downhill walking, and stair descent using dynamic videofluoroscopy. Following 2D/3D registration, tibio-femoral rotations, condylar antero-posterior translations, and the location of the centre of rotation were compared. FINDINGS: The total knee replacement groups predominantly experienced reduced tibial internal/external rotation and altered medial and lateral condylar antero-posterior translations compared to natural knees. An average medial centre of rotation was found for the natural and GMK sphere groups in all three activities, whereas the GMK PS and UC groups experienced a more central to lateral centre of rotation. INTERPRETATION: Each total knee replacement design exhibited characteristic motion patterns, with the GMK Sphere most closely replicating the medial centre of rotation found for natural knees. Despite substantial similarities between the subject groups, none of the implant geometries was able to replicate all aspects of natural tibio-femoral kinematics, indicating that different implant geometries might best address individual functional needs.


Assuntos
Distinções e Prêmios , Prótese do Joelho , Atividades Cotidianas , Fenômenos Biomecânicos , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Fêmur/cirurgia , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Articulação do Joelho/cirurgia , Amplitude de Movimento Articular/fisiologia
10.
Sports (Basel) ; 10(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35202059

RESUMO

Injuries to the shoulder are very common in sports that involve overhead arm or throwing movements. Strength training of the chest muscles has the potential to protect the shoulder from injury. Kinematic and kinetic data were acquired in 20 healthy subjects (age: 24.9 ± 2.7 years) using motion capture, force plates for the bench press exercises and load cells in the cable for the cable pulley exercises with 15% and 30% of body weight (BW). Joint ranges of motion (RoM) and joint moments at the shoulder, elbow and wrist were derived using an inverse dynamics approach. The maximum absolute moments at the shoulder joint were significantly larger for the cable pulley exercises than for the bench press exercises. The cable cross-over exercise resulted in substantially different joint angles and loading patterns compared to most other exercises, with higher fluctuations during the exercise cycle. The present results indicate that a combination of bench press and cable pulley exercises are best to train the full RoM and, thus, intra-muscular coordination across the upper limbs. Care has to be taken when performing cable cross-over exercises to ensure proper stabilisation of the joints during exercise execution and avoid joint overloading.

11.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616945

RESUMO

The success of kinematic analysis that relies on inertial measurement units (IMUs) heavily depends on the performance of the underlying algorithms. Quantifying the level of uncertainty associated with the models and approximations implemented within these algorithms, without the complication of soft-tissue artefact, is therefore critical. To this end, this study aimed to assess the rotational errors associated with controlled movements. Here, data of six total knee arthroplasty patients from a previously published fluoroscopy study were used to simulate realistic kinematics of daily activities using IMUs mounted to a six-degrees-of-freedom joint simulator. A model-based method involving extended Kalman filtering to derive rotational kinematics from inertial measurements was tested and compared against the ground truth simulator values. The algorithm demonstrated excellent accuracy (root-mean-square error ≤0.9°, maximum absolute error ≤3.2°) in estimating three-dimensional rotational knee kinematics during level walking. Although maximum absolute errors linked to stair descent and sit-to-stand-to-sit rose to 5.2° and 10.8°, respectively, root-mean-square errors peaked at 1.9° and 7.5°. This study hereby describes an accurate framework for evaluating the suitability of the underlying kinematic models and assumptions of an IMU-based motion analysis system, facilitating the future validation of analogous tools.


Assuntos
Artroplastia do Joelho , Articulação do Joelho , Humanos , Fenômenos Biomecânicos , Movimento , Movimento (Física)
12.
Front Bioeng Biotechnol ; 9: 754715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820363

RESUMO

Some approaches in total knee arthroplasty aim for an oblique joint line to achieve an even medio-lateral load distribution across the condyles during the stance phase of gait. While there is much focus on the angulation of the joint line in static frontal radiographs, precise knowledge of the associated dynamic joint line orientation and the internal joint loading is limited. The aim of this study was to analyze how static alignment in frontal radiographs relates to dynamic alignment and load distribution, based on direct measurements of the internal joint loading and kinematics. A unique and novel combination of telemetrically measured in vivo knee joint loading and simultaneous internal joint kinematics derived from mobile fluoroscopy ("CAMS-Knee dataset") was employed to access the dynamic alignment and internal joint loading in 6 TKA patients during level walking. Static alignment was measured in standard frontal postoperative radiographs while external adduction moments were computed based on ground reaction forces. Both static and dynamic parameters were analyzed to identify correlations using linear and non-linear regression. At peak loading during gait, the joint line was tilted laterally by 4°-7° compared to the static joint line in most patients. This dynamic joint line tilt did not show a strong correlation with the medial force (R 2: 0.17) or with the mediolateral force distribution (pseudo R 2: 0.19). However, the external adduction moment showed a strong correlation with the medial force (R 2: 0.85) and with the mediolateral force distribution (pseudo R 2: 0.78). Alignment measured in static radiographs has only limited predictive power for dynamic kinematics and loading, and even the dynamic orientation of the joint line is not an important factor for the medio-lateral knee load distribution. Preventive and rehabilitative measures should focus on the external knee adduction moment based on the vertical and horizontal components of the ground reaction forces.

13.
J Biomech ; 110: 109915, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32827791

RESUMO

Accurate assessment of 3D tibio-femoral kinematics is essential for understanding knee joint functionality, but also provides a basis for assessing joint pathologies and the efficacy of musculoskeletal interventions. Until now, however, the assessment of functional kinematics in healthy knees has been mostly restricted to the loaded stance phase of gait, and level walking only, but the most critical conditions for the surrounding soft tissues are known to occur during high-flexion activities. This study aimed to determine the ranges of tibio-femoral rotation and condylar translation as well as provide evidence on the location of the centre of rotation during multiple complete cycles of different gait activities. Based on radiographic images captured using moving fluoroscopy in ten healthy subjects during multiple cycles of level walking, downhill walking and stair descent, 3D femoral and tibial poses were reconstructed to provide a comprehensive description of tibio-femoral kinematics. Despite a significant increase in joint flexion, the condylar antero-posterior range of motion remained comparable across all activities, with mean translations of 6.3-8.3 mm and 7.3-9.3 mm for the medial and lateral condyles respectively. Only the swing phase of level walking and stair descent exhibited a significantly greater range of motion for the lateral over the medial compartment. Although intra-subject variability was low, considerable differences in joint kinematics were observed between subjects. The observed subject-specific movement patterns indicate that accurate assessment of individual pre-operative kinematics together with individual implant selection and/or surgical implantation decisions might be necessary before further improvement to joint replacement outcome can be achieved.


Assuntos
Fêmur , Articulação do Joelho , Fenômenos Biomecânicos , Fêmur/diagnóstico por imagem , Marcha , Humanos , Amplitude de Movimento Articular
14.
J Clin Med ; 9(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630654

RESUMO

This study aimed to understand the ability of fixed-bearing posterior cruciate ligament (PCL)-retaining implants to maintain functionality of the PCL in vivo. To achieve this, elongation of the PCL was examined in six subjects with good clinical and functional outcomes using 3D kinematics reconstructed from video-fluoroscopy, together with multibody modelling of the knee. Here, length-change patterns of the ligament bundles were tracked throughout complete cycles of level walking and stair descent. Throughout both activities, elongation of the anterolateral bundle exhibited a flexion-dependent pattern with more stretching during swing than stance phase (e.g., at 40° flexion, anterolateral bundle experienced 3.9% strain during stance and 9.1% during swing phase of stair descent). The posteromedial bundle remained shorter than its reference length (defined at heel strike of the level gait cycle) during both activities. Compared with loading patterns of the healthy ligament, postoperative elongation patterns indicate a slackening of the ligament at early flexion followed by peak ligament lengths at considerably smaller flexion angles. The reported data provide a novel insight into in vivo PCL function during activities of daily living that has not been captured previously. The findings support previous investigations reporting difficulties in achieving a balanced tension in the retained PCL.

15.
J Arthroplasty ; 35(10): 3010-3030, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32564968

RESUMO

BACKGROUND: Paradoxical anterior translation in midflexion is reduced in total knee arthroplasties (TKAs) with a gradually reducing femoral radius, when compared to a 2-radii design. This reduction has been shown in finite element model simulations, in vitro tests, intraoperatively, and recently also in vivo during a lunge and unloaded flexion-extension. However, TKA kinematics are task dependent and this reduction has not been tested for gait activities. METHODS: Thirty good outcome subjects (≥1 year postoperatively) with a unilateral cruciate-retaining TKA with a gradually reducing (n = 15) or dual (n = 15) femoral radius design were assessed during 5 complete cycles of level walking, stair descent (0.18-m steps), deep knee bend, and sitting down onto and standing up from a chair, using a moving fluoroscope (25 Hz, 1 ms shutter time). Kinematic data were extracted by 2D/3D image registration. RESULTS: Tibiofemoral ranges of motion for flexion-extension, abduction-adduction, internal-external rotation, and anteroposterior (AP) translation were similar for both groups, whereas the pattern of AP translation-flexion-coupling differed. The subjects with the dual-radii design showed a sudden change in direction of AP translation around 30° of flexion, which was not present in the subjects with the gradually reducing femoral radius design. CONCLUSION: Through the unique ability of moving fluoroscopy, the present study confirmed that the gradually reducing femoral radii eliminated the paradoxical sudden anterior translation at 30° present in the dual-radii design in vivo during daily activities, including gait and stair descent.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Rádio (Anatomia) , Amplitude de Movimento Articular
16.
Ann Biomed Eng ; 48(4): 1442, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32125572

RESUMO

The article The Capacity of Generic Musculoskeletal Simulations to Predict Knee Joint Loading Using the CAMS-Knee Datasets, written by Zohreh Imani Nejad et al., was originally published electronically on the publisher's internet portal on January 30, 2020 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on February 18, 2020 to © The Author(s) 2020 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

17.
J Sports Sci ; 38(9): 1000-1008, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32183616

RESUMO

This research assessed the influence of various heel elevation conditions on spinal kinematic and kinetic data during loaded (25% and 50% of body weight) high-bar back squats. Ten novice (mass 67.6 ± 12.4 kg, height 1.73 ± 0.10 m) and ten regular weight trainers (mass 66.0 ± 10.7 kg, height 1.71 ± 0.09 m) completed eight repetitions at each load wearing conventional training shoes standing on the flat level floor (LF) and on an inclined board (EH). The regular weight training group performed an additional eight repetitions wearing weightlifting shoes (WS). Statistical parametric mapping (SPM1D) and repeated measures analysis of variance were used to assess differences in spinal curvature and kinetics across the shoe/floor conditions and loads. SPM1D analyses indicated that during the LF condition the novice weight trainers had greater moments around L4/L5 than the regular weight trainers during the last 20% of the lift (P < 0.05), with this difference becoming non-significant during the EH condition. This study indicates that from a perspective of spinal safety, it appears advantageous for novice weight trainers to perform back squats with their heels slightly elevated, while regular weight trainers appear to realize only limited benefits performing back squats with either EH or WS.


Assuntos
Calcanhar/fisiologia , Treinamento Resistido/métodos , Coluna Vertebral/fisiologia , Levantamento de Peso/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Cinética , Masculino , Sapatos , Estudos de Tempo e Movimento , Adulto Jovem
18.
Ann Biomed Eng ; 48(4): 1430-1440, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32002734

RESUMO

Musculoskeletal models enable non-invasive estimation of knee contact forces (KCFs) during functional movements. However, the redundant nature of the musculoskeletal system and uncertainty in model parameters necessitates that model predictions are critically evaluated. This study compared KCF and muscle activation patterns predicted using a scaled generic model and OpenSim static optimization tool against in vivo measurements from six patients in the CAMS-knee datasets during level walking and squatting. Generally, the total KCFs were under-predicted (RMS: 47.55%BW, R2: 0.92) throughout the gait cycle, but substiantially over-predicted (RMS: 105.7%BW, R2: 0.81) during squatting. To understand the underlying etiology of the errors, muscle activations were compared to electromyography (EMG) signals, and showed good agreement during level walking. For squatting, however, the muscle activations showed large descrepancies especially for the biceps femoris long head. Errors in the predicted KCF and muscle activation patterns were greatest during deep squat. Hence suggesting that the errors mainly originate from muscle represented at the hip and an associated muscle co-contraction at the knee. Furthermore, there were substaintial differences in the ranking of subjects and activities based on peak KCFs in the simulations versus measurements. Thus, future simulation study designs must account for subject-specific uncertainties in musculoskeletal predictions.


Assuntos
Articulação do Joelho/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Idoso , Fenômenos Biomecânicos , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia
19.
Med Eng Phys ; 77: 107-113, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31980316

RESUMO

The accurate quantification of in-vivo tibio-femoral kinematics is essential for understanding joint functionality, but determination of the 3D pose of bones from 2D single-plane fluoroscopic images remains challenging. We aimed to evaluate the accuracy, reliability and repeatability of an intensity-based 2D/3D registration algorithm. The accuracy was evaluated using fluoroscopic images of 2 radiopaque bones in 18 different poses, compared against a gold-standard fiducial calibration device. In addition, 3 natural femora and 3 natural tibiae were used to examine registration reliability and repeatability. Both manual fitting and intensity-based registration exhibited a mean absolute error of <1 mm in-plane. Overall, intensity-based registration of the femoral bone model revealed significantly higher translational and rotational errors than manual fitting, while no statistical differences (except for y-axis translation) were found for the tibial bone model. The repeatability of 108 intensity-based registrations showed mean in-plane standard deviations of 0.23-0.56 mm, but out-of-plane position repeatability was lower (mean SD: femur 7.98 mm, tibia 6.96 mm). SDs for rotations averaged 0.77-2.52°. While the algorithm registered some images extremely well, other images clearly required manual intervention. When the algorithm registered the bones repeatably, it was also accurate, suggesting an approach that includes manual intervention could become practical for efficient and accurate registration.


Assuntos
Algoritmos , Fluoroscopia , Imageamento Tridimensional/métodos , Joelho/diagnóstico por imagem , Humanos , Software
20.
Knee Surg Sports Traumatol Arthrosc ; 28(6): 1765-1773, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31256216

RESUMO

PURPOSE: Unicompartmental knee arthroplasty (UKA), resulting in similar kinematics to native knees, is functionally superior to total knee arthroplasty (TKA). However, ACL deficiency is generally considered to be a contraindication. The main purpose of this study was to investigate if UKA in ACL-deficient knees would result in similar kinematics to conventional UKA with an intact ACL. METHODS: Ten conventional UKA patients were compared to eight ACL-deficient patients with a reduced tibial slope to compensate for instability, resulting from the deficient ACL. Knee kinematics was evaluated with a moving fluoroscope, tracking the knee joint during daily activities. In a standing position (baseline), posterior shift of the femur was observed for ACL-deficient UKA patients, compared to conventional UKA patients. RESULTS: A significant posterior femoral shift in the ACL-deficient group was observed during the first 25% (near extension) of deep knee bend, while there was no difference in kinematic waveforms for all other activities. No significant range of motion differences across different activities between the two UKA groups were detected, except for an increase of medial AP translation in the ACL-deficient group, during deep knee bend and stair descent. CONCLUSION: Despite the posterior femoral shift due to ACL deficiency, both UKA groups showed similar kinematic waveforms, indicating that posterior tibial slope reduction can partially compensate for ACL function. This supported our hypothesis that fixed bearing UKA can be a viable treatment option for selected ACL-deficient patients, allowing patient-specific kinematics. While anteroposterior laxity can be compensated, rotational stability was a prerequisite for this approach. LEVEL OF EVIDENCE: III.


Assuntos
Ligamento Cruzado Anterior/cirurgia , Artroplastia do Joelho/métodos , Fluoroscopia , Articulação do Joelho/cirurgia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Feminino , Fêmur/cirurgia , Humanos , Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Movimento , Amplitude de Movimento Articular , Tíbia/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...