Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 575(7782): 395-401, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31600774

RESUMO

The translocase of the outer mitochondrial membrane (TOM) is the main entry gate for proteins1-4. Here we use cryo-electron microscopy to report the structure of the yeast TOM core complex5-9 at 3.8-Å resolution. The structure reveals the high-resolution architecture of the translocator consisting of two Tom40 ß-barrel channels and α-helical transmembrane subunits, providing insight into critical features that are conserved in all eukaryotes1-3. Each Tom40 ß-barrel is surrounded by small TOM subunits, and tethered by two Tom22 subunits and one phospholipid. The N-terminal extension of Tom40 forms a helix inside the channel; mutational analysis reveals its dual role in early and late steps in the biogenesis of intermembrane-space proteins in cooperation with Tom5. Each Tom40 channel possesses two precursor exit sites. Tom22, Tom40 and Tom7 guide presequence-containing preproteins to the exit in the middle of the dimer, whereas Tom5 and the Tom40 N extension guide preproteins lacking a presequence to the exit at the periphery of the dimer.


Assuntos
Microscopia Crioeletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/química , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Fosfolipídeos/metabolismo , Multimerização Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
2.
Cell ; 175(5): 1365-1379.e25, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445040

RESUMO

The exchange of metabolites between the mitochondrial matrix and the cytosol depends on ß-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and ß-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and ß-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Membranas Intracelulares/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
3.
PLoS Biol ; 16(8): e2005651, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080851

RESUMO

Cilia are organelles specialized in movement and signal transduction. The ciliary transient receptor potential ion channel polycystin-2 (TRPP2) controls elementary cilia-mediated physiological functions ranging from male fertility and kidney development to left-right patterning. However, the molecular components translating TRPP2 channel-mediated Ca2+ signals into respective physiological functions are unknown. Here, we show that the Ca2+-regulated mitochondrial ATP-Mg/Pi solute carrier 25 A 25 (SLC25A25) acts downstream of TRPP2 in an evolutionarily conserved metabolic signaling pathway. We identify SLC25A25 as an essential component in this cilia-dependent pathway using a genome-wide forward genetic screen in Drosophila melanogaster, followed by a targeted analysis of SLC25A25 function in zebrafish left-right patterning. Our data suggest that TRPP2 ion channels regulate mitochondrial SLC25A25 transporters via Ca2+ establishing an evolutionarily conserved molecular link between ciliary signaling and mitochondrial metabolism.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cílios/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Antiporters/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Drosophila melanogaster/metabolismo , Heterozigoto , Humanos , Canais Iônicos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Peixe-Zebra
4.
Cell Rep ; 19(13): 2836-2852, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28658629

RESUMO

Mitochondria perform central functions in cellular bioenergetics, metabolism, and signaling, and their dysfunction has been linked to numerous diseases. The available studies cover only part of the mitochondrial proteome, and a separation of core mitochondrial proteins from associated fractions has not been achieved. We developed an integrative experimental approach to define the proteome of yeast mitochondria. We classified > 3,300 proteins of mitochondria and mitochondria-associated fractions and defined 901 high-confidence mitochondrial proteins, expanding the set of mitochondrial proteins by 82. Our analysis includes protein abundance under fermentable and nonfermentable growth, submitochondrial localization, single-protein experiments, and subcellular classification of mitochondria-associated fractions. We identified mitochondrial interactors of respiratory chain supercomplexes, ATP synthase, AAA proteases, the mitochondrial contact site and cristae organizing system (MICOS), and the coenzyme Q biosynthesis cluster, as well as mitochondrial proteins with dual cellular localization. The integrative proteome provides a high-confidence source for the characterization of physiological and pathophysiological functions of mitochondria and their integration into the cellular environment.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteômica/métodos , Humanos
5.
Cell Metab ; 23(5): 901-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166948

RESUMO

The mitochondrial inner membrane harbors three protein translocases. Presequence translocase and carrier translocase are essential for importing nuclear-encoded proteins. The oxidase assembly (OXA) translocase is required for exporting mitochondrial-encoded proteins; however, different views exist about its relevance for nuclear-encoded proteins. We report that OXA plays a dual role in the biogenesis of nuclear-encoded mitochondrial proteins. First, a systematic analysis of OXA-deficient mitochondria led to an unexpected expansion of the spectrum of OXA substrates imported via the presequence pathway. Second, biogenesis of numerous metabolite carriers depends on OXA, although they are not imported by the presequence pathway. We show that OXA is crucial for the biogenesis of the Tim18-Sdh3 module of the carrier translocase. The export translocase OXA is thus required for the import of metabolite carriers by promoting assembly of the carrier translocase. We conclude that OXA is of central importance for the biogenesis of the mitochondrial inner membrane.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/enzimologia , Núcleo Celular/metabolismo , Mutação/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/metabolismo
6.
Nat Methods ; 13(4): 371-378, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928762

RESUMO

The yeast Saccharomyces cerevisiae is ideal for systematic studies relying on collections of modified strains (libraries). Despite the significance of yeast libraries and the immense variety of available tags and regulatory elements, only a few such libraries exist, as their construction is extremely expensive and laborious. To overcome these limitations, we developed a SWAp-Tag (SWAT) method that enables one parental library to be modified easily and efficiently to give rise to an endless variety of libraries of choice. To showcase the versatility of the SWAT approach, we constructed and investigated a library of ∼1,800 strains carrying SWAT-GFP modules at the amino termini of endomembrane proteins and then used it to create two new libraries (mCherry and seamless GFP). Our work demonstrates how the SWAT method allows fast and effortless creation of yeast libraries, opening the door to new ways of systematically studying cell biology.


Assuntos
Biblioteca Gênica , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Western Blotting , Biologia Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Microscopia de Fluorescência , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...