Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Microbiome ; 4(1): 53, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109797

RESUMO

BACKGROUND: Rapidly spreading parasitic infections like amoebic gill disease (AGD) are increasingly problematic for Atlantic salmon reared in aquaculture facilities and potentially pose a risk to wild fish species in surrounding waters. Currently, it is not known whether susceptibility to AGD differs between wild and farmed salmon. Wild Atlantic salmon populations are declining and this emerging disease could represent an additional threat to their long-term viability. A better understanding of how AGD affects fish health is therefore relevant for the accurate assessment of the associated risk, both to farming and to the well-being of wild populations. In this study, we assessed the impact of natural exposure to AGD on wild, hybrid and farmed post-smolt Atlantic salmon reared in a sea farm together under common garden conditions. RESULTS: Wild fish showed substantially higher mortality levels (64%) than farmed fish (25%), with intermediate levels for hybrid fish (39%) suggesting that AGD susceptibility has an additive genetic basis. Metabolic rate measures representing physiological performance were similar among the genetic groups but were significantly lower in AGD-symptomatic fish than healthy fish. Gut microbial diversity was significantly lower in infected fish. We observed major shifts in gut microbial community composition in response to AGD infections. In symptomatic fish the relative abundance of key taxa Aliivibrio, Marinomonas and Pseudoalteromonas declined, whereas the abundance of Polaribacter and Vibrio increased compared to healthy fish. CONCLUSIONS: Our results highlight the stress AGD imposes on fish physiology and suggest that low metabolic-rate fish phenotypes may be associated with better infection outcomes. We consider the role increased AGD outbreak events and a warmer future may have in driving secondary bacterial infections and in reducing performance in farmed and wild fish.

2.
Evol Appl ; 14(9): 2319-2332, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34603501

RESUMO

Domestication leads to changes in traits that are under directional selection in breeding programmes, though unintentional changes in nonproduction traits can also arise. In offspring of escaping fish and any hybrid progeny, such unintentionally altered traits may reduce fitness in the wild. Atlantic salmon breeding programmes were established in the early 1970s, resulting in genetic changes in multiple traits. However, the impact of domestication on eye size has not been studied. We measured body size corrected eye size in 4000 salmon from six common garden experiments conducted under artificial and natural conditions, in freshwater and saltwater environments, in two countries. Within these common gardens, offspring of domesticated and wild parents were crossed to produce 11 strains, with varying genetic backgrounds (wild, domesticated, F1 hybrids, F2 hybrids and backcrosses). Size-adjusted eye size was influenced by both genetic and environmental factors. Domesticated fish reared under artificial conditions had smaller adjusted eye size when compared to wild fish reared under identical conditions, in both the freshwater and marine environments, and in both Irish and Norwegian experiments. However, in parr that had been introduced into a river environment shortly after hatching and sampled at the end of their first summer, differences in adjusted eye size observed among genetic groups were of a reduced magnitude and were nonsignificant in 2-year-old sea migrating smolts sampled in the river immediately prior to sea entry. Collectively, our findings could suggest that where natural selection is present, individuals with reduced eye size are maladapted and consequently have reduced fitness, building on our understanding of the mechanisms that underlie a well-documented reduction in the fitness of the progeny of domesticated salmon, including hybrid progeny, in the wild.

3.
Aquaculture ; 541: 736772, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34471330

RESUMO

Mycoplasmas are the smallest autonomously self-replicating life form on the planet. Members of this bacterial genus are known to parasitise a wide array of metazoans including vertebrates. Whilst much research has been significant targeted at parasitic mammalian mycoplasmas, very little is known about their role in other vertebrates. In the current study, we aim to explore the biology of mycoplasmas in Atlantic Salmon, a species of major significance for aquaculture, including cellular niche, genome size structure and gene content. Using fluorescent in-situ hybridisation (FISH), mycoplasmas were targeted in epithelial tissues across the digestive tract (stomach, pyloric caecum and midgut) from different development stages (eggs, parr, subadult) of farmed Atlantic salmon (Salmo salar), and we present evidence for an intracellular niche for some of the microbes visualised. Via shotgun metagenomic sequencing, a nearly complete, albeit small, genome (~0.57 MB) as assembled from a farmed Atlantic salmon subadult. Phylogenetic analysis of the recovered genome revealed taxonomic proximity to other salmon derived mycoplasmas, as well as to the human pathogen Mycoplasma penetrans (~1.36 Mb). We annotated coding sequences and identified riboflavin pathway encoding genes and sugar transporters, the former potentially consistent with micronutrient provisioning in salmonid development. Our study provides insights into mucosal adherence, the cellular niche and gene catalog of Mycoplasma in the gut ecosystem of the Atlantic salmon, suggesting a high dependency of this minimalist bacterium on its host. Further study is required to explore and functional role of Mycoplasma in the nutrition and development of its salmonid host.

4.
Scanning ; 36(3): 362-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24170434

RESUMO

Precise patterning of inorganic materials is important for many technological applications. Often lithography processes are required on challenging substrates with respect to topography, flexibility, and surface adhesion. Here we show the fabrication of artificial gunshot residues (GSR) on adhesive tape samples by means of dip-pen lithography as an example for fine lithography on coarse substrates. We deposited lead-, barium-, and antimony-containing inks on SEM adhesive tape by direct writing with a fine tip. Single as well as multiple element structures with dimensions in the range of 10-75 µm were fabricated.

5.
Beilstein J Nanotechnol ; 4: 336-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766959

RESUMO

The fabrication of periodic arrays of single metal nanoparticles is of great current interest. In this paper we present a straight-forward three-step procedure based on chemical electron beam lithography, which is capable of producing such arrays with gold nanoparticles (AuNPs). Preformed 6 nm AuNPs are immobilised on thiol patterns with a pitch of 100 nm by guided self-assembly. Afterwards, these arrays are characterised by using atomic force microscopy.

6.
Langmuir ; 28(5): 2448-54, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22201225

RESUMO

We report the formation of thiol nanopatterns on SAM covered silicon wafers by converting sulfonic acid head groups via e-beam lithography. These thiol groups act as binding sites for gold nanoparticles, which can be enhanced to form electrically conducting nanostructures. This approach serves as a proof-of-concept for the combination of top-down and bottom-up processes for the generation of electrical devices on silicon.


Assuntos
Ouro/química , Nanoestruturas/química , Compostos de Sulfidrila/química , Condutividade Elétrica , Estrutura Molecular , Tamanho da Partícula , Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...