Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 155(12): 124309, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598587

RESUMO

We report an intercluster compound based on co-deposition of the Au cluster [Au9(PPh3)8](NO3)3 and the fulleride KC60(THF). Electronic properties characteristic for a charge interaction between superatoms emerge within the solid state material [Au9(PPh3)8](NO3)3-x(C60)x, as confirmed by UV-VIS and Raman spectroscopy and I-V measurements. These emergent properties are related to the superatomic electronic states of the initial clusters. The material is characterized by Fourier-transform infrared spectroscopy, x-ray diffraction, Raman spectroscopy, and electrical measurements. Structural optimization and ab initio band structure calculations are performed with density functional theory to interpret the nature of the electronic states in the material; Bader charge calculations assign effective oxidation states in support of the superatomic model of cluster interactions.

2.
J Comput Chem ; 39(19): 1208-1214, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29464728

RESUMO

The introduction of the so called fluorolytic sol-gel synthesis in 2003 gave access to previously inaccessible aluminum oxo-fluorides, thus to nanoscopic materials and, more importantly, novel catalysts. The intermediate cluster structures synthesized and stabilized by Kemnitz and coworkers have mainly been protected by iso-propoxide groups. However, since catalytic reactions take place in a large variety of media, hydrophilic analogs of those clusters would be of interest. In this manuscript, we present a computational analysis for the fluorination reaction, which represents the second part of fluorolytic sol-gel synthesis, and a theoretical study of the synthesized Al4 F4 (µ4 -O)(µ-Oi Pr)5 [H(Oi Pr)2 ] nanostructure's conversion to its hydroxylated analog Al4 F4 (µ4 -O)(µ-OH)5 [H(OH)2 ] utilizing the nudged elastic band method. Furthermore, the role of the fluorine atoms of the cluster in an aqueous medium is evaluated by studying the incremental addition of water molecules to the cluster with and without fluorine atoms. In addition, NMR shifts of clusters exhibiting different substituents are compared. It has been found that the inclusion of an explicit solvent is necessary to capture the magnetic response of the individual cluster atoms in an aqueous solvent correctly. © 2018 Wiley Periodicals, Inc.

3.
Phys Chem Chem Phys ; 20(9): 6167-6175, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29431758

RESUMO

The synthesis of cluster based materials poses an exciting challenge for experimental chemistry. The main advantage of these materials compared to conventional bulk compounds is the simple tunability of the chemical and physical characteristics of individual clusters. As a consequence, cluster assemblies can theoretically be used for the creation of designer materials exhibiting specifically desired properties. Since superatoms reveal a large intrinsic thermodynamic stability and often very interesting tunable electronic characteristics, they seem to be an excellent choice as building blocks for the bulk. Here, we present a detailed first principles analysis of carefully chosen superatomic cluster binary and bulk assemblies, in order to determine which forces control the attractive interaction in superatomic solids, and how the individual cluster properties affect these assemblies. This study uses the highly tunable and stable Au13(RS(AuSR)2)6 cluster with a variety of dopants as a model system, while the principles are likely transferable to other ligand protected systems with a straightforward superatomic electron count, such as aluminum or sodium clusters. Three different superatomic materials based on doped gold clusters, boranes and C60s are constructed and evaluated. Beyond the verification that superatoms can be used to create materials that reveal emergent atom-based solid like properties, various factors influencing superatomic materials, such as the EA, IP and relative sizes of the clusters, have been identified and critically evaluated.

4.
Phys Chem Chem Phys ; 18(47): 32541-32550, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27874111

RESUMO

Inspired by recent success of synthesizing cluster assembled compounds we address the question to what extent the three new materials [Co6Se8(PEt3)6][C60]2, [Cr6Te8(PEt3)6][C60]2, and [Ni9Te6(PEt3)8]C60, upon forming bulk compounds, imitate atomic analogues. Although experimental results suggest the latter, a theoretical approach is the method of choice for offering a conclusive answer and for studying the actual superatomic character. The concept of superatoms for describing atom-imitating clusters is very intriguing since it allows chemists to apply their chemical intuition - a useful tool for predicting new materials - when it comes to inter-cluster reactions. Thus, we systematically study the lattice structure, the intercluster binding, and the electronic structure by density functional theory and assess them in terms of their superatomic features. We show that collective properties arise upon bulk formation, which promotes arguments for the formation of solids in which the constituent clusters have a superatomic character that determines some form of chemical bonding. Additionally, we find evidence for the formation of superatomic states. Unfortunately, however, due to the mixing of electronic states of transition metals and chalcogen atoms, no typical electronic shell closing in the cluster cores can be identified.

5.
Chemphyschem ; 17(20): 3237-3244, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27539555

RESUMO

The electronic properties of doped thiolate-protected gold clusters are often referred to as tunable, but their study to date, conducted at different levels of theory, does not allow a systematic evaluation of this claim. Here, using density functional theory, the applicability of the superatomic model to these clusters is critically evaluated, and related to the degree of structural distortion and electronic inhomogeneity in the differently doped clusters, with dopant atoms Pd, Pt, Cu, and Ag. The effect of electron number is systematically evaluated by varying the charge on the overall cluster, and the nominal number of delocalized electrons, employed in the superatomic model, is compared to the numbers obtained from Bader analysis of individual atomic charges. We find that the superatomic model is highly applicable to all of these clusters, and is able to predict and explain the changing electronic structure as a function of charge. However, significant perturbations of the model arise due to doping, due to distortions of the core structure of the Au13 [RS(AuSR)2 ]6- cluster. In addition, analysis of the electronic structure indicates that the superatomic character is distributed further across the ligand shell in the case of the doped clusters, which may have implications for the self-assembly of these clusters into materials. The prediction of appropriate clusters for such superatomic solids relies critically on such quantitative analysis of the tunability of the electronic structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...