Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 101(9): e03106, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32609381

RESUMO

Understanding community assembly is a key goal in community ecology. Environmental filtering influences community assembly by excluding ill-adapted species, resulting in communities with similar functional traits. An RLQ (a four-way ordination) analysis incorporating spatial data was run on a data set of 642 species of cheilostomes (Bryozoa) from 779 New Zealand sites, and results were compared to trends in other sessile, epibenthic taxa. This revealed environmental filtering of colony form: encrusting-cemented taxa were predominant in shallow environments with hard substrata (<200 m), while erect-rooted taxa characterized deeper environments with soft substrata (>200 m). Furthermore, erect taxa found in shallow environments with high current speeds were typically jointed. Polymorphism also followed environmental gradients. External ovicells (brood chambers) were more common in deeper, low-oxygen water than immersed and internal ovicells. This may reflect the oxygen needs of the embryo or increased predation intensity in shallow environments. Bryozoans with costae tended to be found in deeper water as well, while bryozoans with calcified frontal shields were found in shallow environments with a higher concentration of CaCO3 . Avicularia did not appear to be related to environmental conditions, and changes in pivot bar structure with depth likely represent a phylogenetic signal. The importance of substratum type as a strict environmental filter suggests that anchoring structures, like rootlets, may be "key innovations" for other sessile, epibenthic taxa like sponges and ascidians.


Assuntos
Briozoários , Animais , Briozoários/genética , Ecologia , Nova Zelândia , Filogenia , Polimorfismo Genético
2.
Biol Rev Camb Philos Soc ; 94(3): 773-809, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30450650

RESUMO

Modularity is a fundamental concept in biology. Most taxa within the colonial invertebrate phylum Bryozoa have achieved division of labour through the development of specialized modules (polymorphs), and this group is perhaps the most outstanding exemplar of the phenomenon. We provide a comprehensive description of the diversity, morphology and function of these polymorphs and the significance of modularity to the evolutionary success of the phylum, which has >21000 described fossil and living species. Modular diversity likely arose from heterogeneous microenvironmental conditions, and cormidia (repeated clusters of associated modules) are an emergent property of the cue thresholds governing zooid plasticity. Polymorphs in a colony have, during phylogeny, transitioned into associated non-zooidal structures (appendages), increasing colonial integration. While the level of module compartmentalization is important for the evolution of bryozoan polymorphism, it may be less influential for other colonial invertebrates.


Assuntos
Briozoários/genética , Polimorfismo Genético , Animais , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...