Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 339(6116): 178-81, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23307736

RESUMO

Measuring a quantum system can randomly perturb its state. The strength and nature of this back-action depend on the quantity that is measured. In a partial measurement performed by an ideal apparatus, quantum physics predicts that the system remains in a pure state whose evolution can be tracked perfectly from the measurement record. We demonstrated this property using a superconducting qubit dispersively coupled to a cavity traversed by a microwave signal. The back-action on the qubit state of a single measurement of both signal quadratures was observed and shown to produce a stochastic operation whose action is determined by the measurement result. This accurate monitoring of a qubit state is an essential prerequisite for measurement-based feedback control of quantum systems.

2.
Phys Rev Lett ; 108(12): 123902, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540583

RESUMO

In this Letter, we report the observation of the correlation between two modes of microwave radiation resulting from the amplification of quantum noise by the Josephson parametric converter. This process, seen from the pump, can be viewed as parametric down-conversion. The correlation is measured by an interference experiment displaying a contrast better than 99% with a number of photons per mode greater than 250,000. Dispersive measurements of mesoscopic systems and quantum encryption can benefit from this development.

3.
Nature ; 465(7294): 64-8, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20445625

RESUMO

Recent progress in solid-state quantum information processing has stimulated the search for amplifiers and frequency converters with quantum-limited performance in the microwave range. Depending on the gain applied to the quadratures of a single spatial and temporal mode of the electromagnetic field, linear amplifiers can be classified into two categories (phase sensitive and phase preserving) with fundamentally different noise properties. Phase-sensitive amplifiers use squeezing to reduce the quantum noise, but are useful only in cases in which a reference phase is attached to the signal, such as in homodyne detection. A phase-preserving amplifier would be preferable in many applications, but such devices have not been available until now. Here we experimentally realize a proposal for an intrinsically phase-preserving, superconducting parametric amplifier of non-degenerate type. It is based on a Josephson ring modulator, which consists of four Josephson junctions in a Wheatstone bridge configuration. The device symmetry greatly enhances the purity of the amplification process and simplifies both its operation and its analysis. The measured characteristics of the amplifier in terms of gain and bandwidth are in good agreement with analytical predictions. Using a newly developed noise source, we show that the upper bound on the total system noise of our device under real operating conditions is three times the quantum limit. We foresee applications in the area of quantum analog signal processing, such as quantum non-demolition single-shot readout of qubits, quantum feedback and the production of entangled microwave signal pairs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...