Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 337: 122610, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742859

RESUMO

Short-chain per- and polyfluoroalkyl substances (PFAS) are highly stable and widely used environmental contaminants that pose potential health risks to humans. Aggregating reliable mechanistic information for safety assessments necessitates physiologically relevant high-throughput screening approaches. Here, we demonstrated the utility of a liver-on-a-chip model to investigate the effects of five short-chain PFAS at low (1 nM) and high (1 µM) concentrations on toxicologically-relevant gene expression profiles using the QuantiGene® Plex Assay. We found that the short-chain PFAS tested in this study modulated the expression of ABCG2, a gene encoding for the breast cancer resistance protein (BCRP), with marked and significant upregulation (up to 4-fold) observed for all but one of the short-chain PFAS tested. PFBS and HFPO-DA repressed SLCO1B3 expression, a gene that encodes for an essential liver-specific organic anion transporter. High concentrations of PFBS, PFHxA, and PFHxS upregulated the expression of genes encCYP1A1,CYP2B6 and CYP2C19 with the same treatments resulting in the repression of the expression of the gene encoding CYP1A2. This dysregulation could have consequences for the clearance of endogenous compounds and xenobiotics. However, we acknowledge that increased expression of genes encoding for transporters and biotransformation enzymes may or may not indicate changes to their protein expression or activity. Overall, our study provides important insights into the effects of short-chain PFAS on liver function and their potential implications for human health. The use of the liver-on-a-chip model in combination with the QuantiGene® Plex Assay may be a valuable tool for future high-throughput screening and gene expression profiling in toxicology studies.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transcriptoma , Poluentes Químicos da Água/análise , Proteínas de Neoplasias , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Fígado/química , Dispositivos Lab-On-A-Chip
2.
Curr Res Toxicol ; 4: 100107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332622

RESUMO

A growing public health concern, chronic Diesel Exhaust Particle (DEP) exposure is a heavy risk factor for the development of neurodegenerative diseases like Alzheimer's (AD). Considered the brain's first line of defense, the Blood-Brain Barrier (BBB) and perivascular microglia work in tandem to protect the brain from circulating neurotoxic molecules like DEP. Importantly, there is a strong association between AD and BBB dysfunction, particularly in the Aß transporter and multidrug resistant pump, P-glycoprotein (P-gp). However, the response of this efflux transporter is not well understood in the context of environmental exposures, such as to DEP. Moreover, microglia are seldom included in in vitro BBB models, despite their significance in neurovascular health and disease. Therefore, the goal of this study was to evaluate the effect of acute (24 hr.) DEP exposure (2000 µg/ml) on P-gp expression and function, paracellular permeability, and inflammation profiles of the human in vitro BBB model (hCMEC/D3) with and without microglia (hMC3). Our results suggested that DEP exposure can decrease both the expression and function of P-gp in the BBB, and corroborated that DEP exposure impairs BBB integrity (i.e. increased permeability), a response that was significantly worsened by the influence of microglia in co-culture. Interestingly, DEP exposure seemed to produce atypical inflammation profiles and an unexpected general downregulation in inflammatory markers in both the monoculture and co-culture, which differentially expressed IL-1ß and GM-CSF. Interestingly, the microglia in co-culture did not appear to influence the response of the BBB, save in the permeability assay, where it worsened the BBB's response. Overall, our study is important because it is the first (to our knowledge) to investigate the effect of acute DEP exposure on P-gp in the in vitro human BBB, while also investigating the influence of microglia on the BBB's responses to this environmental chemical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...