Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(11): e0165531, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832091

RESUMO

INTRODUCTION: An efficient and reliable method to estimate plant cell viability, especially of pollen, is important for plant breeding research and plant production processes. Pollen quality is determined by classical methods, like staining techniques or in vitro pollen germination, each having disadvantages with respect to reliability, analysis speed, and species dependency. Analysing single cells based on their dielectric properties by impedance flow cytometry (IFC) has developed into a common method for cellular characterisation in microbiology and medicine during the last decade. The aim of this study is to demonstrate the potential of IFC in plant cell analysis with the focus on pollen. METHOD: Developing and mature pollen grains were analysed during their passage through a microfluidic chip to which radio frequencies of 0.5 to 12 MHz were applied. The acquired data provided information about the developmental stage, viability, and germination capacity. The biological relevance of the acquired IFC data was confirmed by classical staining methods, inactivation controls, as well as pollen germination assays. RESULTS: Different stages of developing pollen, dead, viable and germinating pollen populations could be detected and quantified by IFC. Pollen viability analysis by classical FDA staining showed a high correlation with IFC data. In parallel, pollen with active germination potential could be discriminated from the dead and the viable but non-germinating population. CONCLUSION: The presented data demonstrate that IFC is an efficient, label-free, reliable and non-destructive technique to analyse pollen quality in a species-independent manner.


Assuntos
Citometria de Fluxo/métodos , Germinação , Pólen/citologia , Análise de Célula Única/métodos , Capsicum/citologia , Capsicum/crescimento & desenvolvimento , Sobrevivência Celular , Cucumis sativus/citologia , Cucumis sativus/crescimento & desenvolvimento , Impedância Elétrica , Dispositivos Lab-On-A-Chip , Ondas de Rádio , Solanum/citologia , Solanum/crescimento & desenvolvimento , Nicotiana/citologia , Nicotiana/crescimento & desenvolvimento
2.
Cytometry A ; 85(6): 525-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24639248

RESUMO

When examined, the expansion of many stem cell classes has been shown to be facilitated by mechanically-regulated calcium entry from the extracellular space that also helps direct their developmental programs towards mechanosensitive tissues such as muscle, bone, and connective tissues. Cation channels of the transient receptor potential C class (TRPC) are the predominant conduit for calcium entry into proliferating myoblasts. Nonetheless, methods to non-invasively study this calcium-entry pathway are still in their infancy. Here we show that a microfluidic configuration of impedance-based flow cytometry (IFC) provides a method to detect TRP channel expression in cells at high throughput. Using this technology we discern changes in the IFC signal that correlates with the functional expression of TRPC1 channels and coincides with cell proliferation. Pharmacological agents, mechanical conditions or malignant states that alter the expression of TRPC1 channels are reflected in the IFC signal accordingly, whereas pharmacological agents that alter cation-permeation through TRPC1 channels, or ionophores that independently increase calcium entry across the membrane, have little effect. Our results suggest that IFC detects changes in whole-cell membrane organization associated with TRPC1 activation and surface expression, rather than cation permeation through the channel per se. IFC-based technologies thus have the potential to identify living stem cells in their earliest stages of expansion without staining or chemical fixation.


Assuntos
Proliferação de Células/genética , Citometria de Fluxo/métodos , Neoplasias/patologia , Canais de Cátion TRPC/biossíntese , Cálcio/química , Cálcio/metabolismo , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Impedância Elétrica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mioblastos/metabolismo , Neoplasias/diagnóstico , Células-Tronco/patologia , Canais de Cátion TRPC/genética
3.
Cytometry A ; 77(7): 648-66, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20583276

RESUMO

Microfabricated flow cytometers can detect, count, and analyze cells or particles using microfluidics and electronics to give impedance-based characterization. Such systems are being developed to provide simple, low-cost, label-free, and portable solutions for cell analysis. Recent work using microfabricated systems has demonstrated the capability to analyze micro-organisms, erythrocytes, leukocytes, and animal and human cell lines. Multifrequency impedance measurements can give multiparametric, high-content data that can be used to distinguish cell types. New combinations of microfluidic sample handling design and microscale flow phenomena have been used to focus and position cells within the channel for improved sensitivity. Robust designs will enable focusing at high flowrates while reducing requirements for control over multiple sample and sheath flows. Although microfluidic impedance-based flow cytometers have not yet or may never reach the extremely high throughput of conventional flow cytometers, the advantages of portability, simplicity, and ability to analyze single cells in small populations are, nevertheless, where chip-based cytometry can make a large impact.


Assuntos
Desenho de Equipamento , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Microfluídica/instrumentação , Microfluídica/métodos , Animais , Morte Celular , Diferenciação Celular , Fenômenos Fisiológicos Celulares , Sobrevivência Celular , Impedância Elétrica , Citometria de Fluxo/normas , Humanos , Microfluídica/normas , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...