Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893686

RESUMO

We investigated the possibility that sylvatic circulation of African swine fever virus (ASFV) in warthogs and Ornithodoros ticks had extended beyond the historically affected northern part of South Africa that was declared a controlled area in 1935 to prevent the spread of infection to the rest of the country. We recently reported finding antibody to the virus in extralimital warthogs in the south of the country, and now describe the detection of infected ticks outside the controlled area. A total of 5078 ticks was collected at 45 locations in 7/9 provinces during 2019-2021 and assayed as 711 pools for virus content by qPCR, while 221 pools were also analysed for tick phylogenetics. Viral nucleic acid was detected in 50 tick pools representing all four members of the Ornithodoros (Ornithodoros) moubata complex known to occur in South Africa: O. (O.) waterbergensis and O. (O.) phacochoerus species yielded ASFV genotypes XX, XXI, XXII at 4 locations and O. (O.) moubata yielded ASFV genotype I at two locations inside the controlled area. Outside the controlled area, O. (O.) moubata and O. (O.) compactus ticks yielded ASFV genotype I at 7 locations, while genotype III ASFV was identified in O. (O.) compactus ticks at a single location. Two of the three species of the O. (O.) savignyi complex ticks known to be present in the country, O. (O.) kalahariensis and O. (O.) noorsveldensis, were collected at single locations and found negative for virus. The only member of the Pavlovskyella subgenus of Ornithodoros ticks known to occur in South Africa, O. (P.) zumpti, was collected from warthog burrows for the first time, in Addo National Park in the Eastern Cape Province where ASFV had never been recorded, and it tested negative for the viral nucleic acid. While it is confirmed that there is sylvatic circulation of ASFV outside the controlled area in South Africa, there is a need for more extensive surveillance and for vector competence studies with various species of Ornithodoros ticks.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Ácidos Nucleicos , Ornithodoros , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , África do Sul/epidemiologia , Suínos
2.
Front Vet Sci ; 8: 746129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901242

RESUMO

Sylvatic circulation of African swine fever virus (ASFV) in warthogs and Ornithodoros ticks that live in warthog burrows historically occurred in northern South Africa. Outbreaks of the disease in domestic pigs originated in this region. A controlled area was declared in the north in 1935 and regulations were implemented to prevent transfer of potentially infected suids or products to the rest of the country. However, over the past six decades, warthogs have been widely translocated to the south where the extralimital animals have flourished to become an invasive species. Since 2016, there have been outbreaks of ASF in pigs outside the controlled area that cannot be linked to transfer of infected animals or products from the north. An investigation in 2008-2012 revealed that the presence of Ornithodoros ticks and ASFV in warthog burrows extended marginally across the boundary of the controlled area. We found serological evidence of ASFV circulation in extralimital warthogs further south in the central part of the country.

3.
Virus Genes ; 54(4): 527-535, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29730763

RESUMO

The attenuated live virus vaccine that is used in South Africa to protect against African horse sickness infection was developed more than 50 years ago. With the selection of the vaccine strains by cell culture passage, a correlation between the size of plaques formed in monolayer Vero cultures and attenuation of virus virulence in horses was found. The large plaque phenotype was used as an indication of cell culture adaptation and strongly correlated with attenuation of virulence in horses. There was never any investigation into the genetic causes of either the variation in plaque size, or the loss of virulence. An understanding of the underlying mechanisms of attenuation would benefit the production of a safer AHSV vaccine. To this end, the genomes of different strains of two African horse sickness isolates, producing varying plaque sizes, were compared and the differences between them identified. This comparison suggested that proteins VP2, VP3, VP5 and NS3 were most likely involved in the determination of the plaque phenotype. Comparison between genome sequences (obtained from GenBank) of low and high passage strains from two additional serotypes indicated that VP2 was the only protein with amino acid substitutions in all four serotypes. The amino acid substitutions all occurred within the same hydrophilic area, resulting in increased hydrophilicity of VP2 in the large plaque strains.


Assuntos
Vírus da Doença Equina Africana/fisiologia , Doença Equina Africana/virologia , Proteínas do Capsídeo/genética , Fenótipo , Vírus da Doença Equina Africana/classificação , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Linhagem Celular , Células Cultivadas , Cricetinae , Genoma Viral , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sorogrupo , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...