Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(24): 4775-4786, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38836889

RESUMO

Calculated potential energy structures and landscapes are very often used to define the sequence of reaction steps in an organometallic reaction mechanism and interpret kinetic isotope effect (KIE) measurements. Underlying most of this structure-to-mechanism translation is the use of statistical rate theories without consideration of atomic/molecular motion. Here we report direct dynamics simulations for an organometallic benzene reductive elimination reaction, where nonstatistical intermediates and dynamic-controlled pathways were identified. Specifically, we report single spin state as well as mixed spin state quasiclassical direct dynamics trajectories in the gas phase and explicit solvent for benzene reductive elimination from Mo and W bridged cyclopentadienyl phenyl hydride complexes ([Me2Si(C5Me4)2]M(H)(Ph), M = Mo and W). Different from the energy landscape mechanistic sequence, the dynamics trajectories revealed that after the benzene C-H bond forming transition state (often called reductive coupling), σ-coordination and π-coordination intermediates are either skipped or circumvented and that there is a direct pathway to forming a spin flipped solvent caged intermediate, which occurs in just a few hundred femtoseconds. Classical molecular dynamics simulations were then used to estimate the lifetime of the caged intermediate, which is between 200 and 400 picoseconds. This indicates that when the η2-π-coordination intermediate is formed, it occurs only after the first formation of the solvent-caged intermediate. This dynamic mechanism intriguingly suggests the possibility that the solvent-caged intermediate rather than a coordination intermediate is responsible (or partially responsible) for the inverse KIE value experimentally measured for W. Additionally, this dynamic mechanism prompted us to calculate the kH/kD KIE value for the C-H bonding forming transition states of Mo and W. Surprisingly, Mo gave a normal value, while W gave an inverse value, albeit small, due to a much later transition state position.

2.
Phys Chem Chem Phys ; 26(15): 11386-11394, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38586933

RESUMO

In reactions with consecutive transition states without an intermediate, and an energy surface bifurcation, atomic motion generally determines product selectivity. Understanding this dynamic-based selectivity can be straightforward if there is extremely fast descent from the first transition state to a product. However, in cases where a nonstatistical roaming/entropic intermediate occurs prior to product formation the motion that influences selectivity can be difficult to identify. Here we report quasiclassical direct dynamics trajectories for the dirhodium catalyzed reaction between styryldiazoacetate and 1,4-cyclohexadiene and prior experiments by Davies showed competitive allylic C-H insertion and Cope products. Trajectories confirmed the proposed energy surface bifurcation and revealed that dirhodium vinylcarbenoid when reacting with 1,4-cyclohexadiene can induce either a dynamically concerted pathway or a dynamically stepwise pathway with a nonstatistical entropic tight ion-pair intermediate. In the dynamically stepwise reaction pathway C-H insertion versus Cope selectivity is highly influenced by whether or not vibrational synchronization occurs in the nonstatistical entropic intermediate. This vibrational synchronization highlights the possible need for an entropic intermediate to have organized transition state-like motion to proceed to a product.

3.
J Am Chem Soc ; 146(4): 2452-2464, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241715

RESUMO

The mechanism of catalytic C-H functionalization of alkanes by Fe-oxo complexes is often suggested to involve a hydrogen atom transfer (HAT) step with the formation of a radical-pair intermediate followed by diverging pathways for radical rebound, dissociation, or desaturation. Recently, we showed that in some Fe-oxo reactions, the radical pair is a nonstatistical-type intermediate and dynamic effects control rebound versus dissociation pathway selectivity. However, the effect of the solvent cage on the stability and lifetime of the radical-pair intermediate has never been analyzed. Moreover, because of the extreme complexity of motion that occurs during dynamics trajectories, the underlying physical origin of pathway selectivity has not yet been determined. For the reaction between [(TQA_Cl)FeIVO]+ and cyclohexane, here, we report explicit solvent trajectories and machine learning analysis on transition-state sampled features (e.g., vibrational, velocity, and geometric) that identified the transferring hydrogen atom kinetic energy as the most important factor controlling rebound versus nonrebound dynamics trajectories, which provides an explanation for our previously proposed dynamic matching effect in fast rebound trajectories that bypass the radical-pair intermediate. Manual control of the reaction trajectories confirmed the importance of this feature and provides a mechanism to enhance or diminish selectivity for the rebound pathway. This led to a general catalyst design principle and proof-of-principle catalyst design that showcases how to control rebound versus dissociation reaction pathway selectivity.

4.
J Comput Chem ; 42(24): 1750-1754, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34109660

RESUMO

We describe a bundle for UCSF ChimeraX called SEQCROW that provides advanced structure editing capabilities and quantum chemistry utilities designed for complex organic and organometallic compounds. SEQCROW includes graphical presets and bond editing tools that facilitate the generation of publication-quality molecular structure figures while also allowing users to build molecular structures quickly and efficiently by mapping new ligands onto existing organometallic complexes as well as adding rings and substituents. Other capabilities include the ability to visualize vibrational modes and simulated IR spectra, to compute and visualize molecular descriptors including percent buried volume, ligand cone angles, and Sterimol parameters, to process thermochemical corrections from quantum mechanical computations, to generate input files for ORCA, Psi4, and Gaussian, and to run and manage computational jobs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...