Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Contam Hydrol ; 265: 104382, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38861839

RESUMO

Some Per- and polyfluoroalkyl substances (PFAS) are strongly retained in the vadose zone due to their sorption to both soils and air-water interfaces. While significant research has been dedicated to understanding equilibrium behavior for these multi-phase retention processes, leaching and desorption from aqueous film-forming foam (AFFF) impacted soils under field relevant conditions can exhibit significant deviations from equilibrium. Herein, laboratory column studies using field collected AFFF-impacted soils were employed to examine the leaching of perfluoroalkyl acids (PFAAs) under simulated rainfall conditions. The HYDRUS 1-D model was calibrated to estimate the unsaturated hydraulic properties of the soil in a layered system using multiple boundary condtions. Forward simulations of equilibrium PFAS partitioning using the HYDRUS model and simplified mass balance calculations showed good agreement with the net PFAS mass flux out of the column. However, neither were able to predict the PFAS concentrations in the leached porewater. To better understand the mechanisms controlling the leaching behavior, the HYDRUS 1-D two-site leaching model incorporating solid phase rate limitation and equilibrium air-water interfacial partitioning was employed. Three variations of the novel model incorporating different forms of equilibrium air-water interfacial partitioning were considered using built-in numerical inversion. Results of numerical inversion show that a combination of air-water interfacial collapse and rate-limited desorption from soils can better predict the unique leaching behavior exhibited by PFAAs in AFFF-impacted soils. A sensitivity analysis of the initial conditions and rate-limited desorption terms was conducted to assess the agreement of the model with measured data. The models demonstrated herein show that, under some circumstances, laboratory equilibrium partitioning data can provide a reasonable estimation of total mass leaching, but fail to account for the significant rate-limited, non-Fickian transport which affect PFAA leaching to groundwater in unsaturated soils.

2.
J Contam Hydrol ; 264: 104359, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38697007

RESUMO

Poly- and perfluoroalkyl substance (PFAS) leaching from unsaturated soils impacted with aqueous film-forming foams (AFFFs) is an environmental challenge that remains difficult to measure and predict. Complicating measurements and predictions of this process is a lack of understanding between the PFAS concentrations measured in a collected environmental unsaturated soil sample, and the PFAS concentrations measured in the corresponding porewater using field-deployed lysimeters. The applicability of bench-scale batch testing to assess this relationship also remains uncertain. In this study, field-deployed porous cup suction lysimeters were used to measure PFAS porewater concentrations in unsaturated soils at 5 AFFF-impacted sites. Field-measured PFAS porewater concentrations were compared to those measured in porewater extracted in the laboratory from collected unsaturated soil cores, and from PFAS concentrations measured in the laboratory using batch soil slurries. Results showed that, despite several years since the last AFFF release at most of the test sites, precursors were abundant in 3 out of the 5 sites. Comparison of field lysimeter results to laboratory testing suggested that the local equilibrium assumption was valid for at least 3 of the sites and conditions of this study. Surprisingly, PFAS accumulation at the air-water interface was orders of magnitude less than expected at two of the test sites, suggesting potential gaps in the understanding of PFAS accumulation at the air-water interface at AFFF-impacted sites. Finally, results herein suggest that bench-scale testing on unsaturated soils can in some cases be used to inform on PFAS in situ porewater concentrations.


Assuntos
Monitoramento Ambiental , Fluorocarbonos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/química , Fluorocarbonos/química , Fluorocarbonos/análise , Solo/química , Poluentes Químicos da Água/análise , Ar/análise , Água/química
3.
J Hazard Mater ; 465: 133460, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211524

RESUMO

The widespread use of per- and polyfluoroalkyl substances (PFAS)-containing products in numerous commercial and industrial applications has resulted in their occurrence in wastewater treatment plants (WWTPs). Herein, proof-of-concept bench-scale experiments were performed to measure the extent to which PFAS could be removed from a WWTP if aerosols generated during aeration were captured. Experiments were designed to mimic the aeration rate:water volume ratio, the water volume:surface area ratio, and aeration bubble size applicable to the full-scale aeration vessel. Results showed that substantial (75%) removal of perfluorooctane sulfonate (PFOS) was observed under these operating conditions in the bench-scale system; up to 97% PFOS removal was observed if the aeration rate was increased 3-fold. PFAS removal generally increased with increasing aerosol capture and with increasing PFAS surface activity. Analysis of semi-quantified PFAS showed that the semi-quantified PFAS accounted for approximately 93% of the identified PFAS in the raw wastewater, dominated largely by the presence of 2:2 fluorotelomer carboxylic acid (2:2 FTCA). This preliminary study suggests that aerosol capture in aeration basins has potential for mitigating PFAS in WWTPs. Further testing is needed to assess the feasibility of this approach at the field scale.

4.
J Hazard Mater ; 466: 133591, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295728

RESUMO

The widespread use of aqueous film-forming foam (AFFF) for firefighting and firefighter training has led to extensive per- and polyfluoroalkyl substance (PFAS) contamination in the environment. Challenges remain in the analytical determination of PFASs via liquid chromatography-mass spectrometry (LC-MS), particularly when attempting to include ultrashort-chain perfluoroalkyl acids (PFAAs) and longer-chain anionic and zwitterionic PFASs in a single direct injection. In this study, we assessed the performance of three analytical LC columns (C18, JJ, and Acclaim columns) to separate targeted and suspect PFASs in AFFF-impacted water samples collected from five sites. The C18 column failed to retain ultrashort-chain PFAAs while the JJ and Acclaim columns were not suitable for hydrophobic PFASs. Ultrashort-chain PFAAs were detected at three sites and comprised 1.6-18% of the total perfluoroalkyl carboxylic and sulfonic acids. Semi-quantified concentrations of suspect PFASs comprised 0.70-13% of the total PFASs. When attempting to capture the entirety of the PFAS mass in a water sample, the C18 column captured the broadest suite of suspect PFASs, while the JJ column quantified the most total PFAS mass. Results of this study highlight the importance and tradeoffs of LC column choice to comprehensively determine the composition of PFASs and their concentrations in AFFF-impacted water samples.

5.
J Contam Hydrol ; 260: 104268, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064801

RESUMO

Few field methods are available for characterizing source zones impacted with aqueous film forming foam (AFFF). Non-invasive geophysical characterization of AFFF source zone contamination in situ could assist with the delineation and characterization of these sites, allowing for more informed sampling regimes aimed at quantifying subsurface poly- and perfluoroalkyl substances (PFAS) contamination. We present initial results from the investigation of the sensitivity of two existing surface and borehole-deployable geophysical technologies, spectral induced polarization (SIP), and low field nuclear magnetic resonance (NMR), to soils impacted with AFFF. To investigate the sensitivity of these methods to AFFF-impacted soil, bench-scale column experiments were conducted on samples consisting of natural and synthetic soils and groundwater. While our findings do not show strong evidence of NMR sensitivity to soil PFAS contamination, we do find evidence that SIP has sufficient sensitivity to detect sorption of AFFF constituents (including PFAS) to soils. This finding is based on evidence that AFFF constituents associated with the pore surface produce a measurable polarization response in both freshly impacted synthetic soils and in soils historically impacted with AFFF. Our findings encourage further exploration of the SIP method as a technology for characterizing contaminant concentrations across AFFF source zones.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Solo/química , Poluentes Químicos da Água/análise , Água/química , Água Subterrânea/química , Espectroscopia de Ressonância Magnética
6.
Environ Sci Technol ; 57(21): 8053-8064, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37200532

RESUMO

Historical releases of aqueous film forming foam (AFFF) are significant sources of poly- and perfluoroalkyl substances (PFASs), including perfluoroalkyl acids (PFAAs) and their precursors, to the environment. While several studies have focused on microbial biotransformation of polyfluorinated precursors to PFAAs, the role of abiotic transformations at AFFF-impacted sites is less clear. Herein, we use photochemically generated hydroxyl radical to demonstrate that environmentally relevant concentrations of hydroxyl radical (•OH) can play a significant role in these transformations. High-resolution mass spectrometry (HRMS) was used to perform targeted analysis, suspect screening, and nontargeted analyses, which were used to identify the major products of AFFF-derived PFASs as perfluorocarboxylic acids, though several potentially semi-stable intermediates were also observed. Using competition kinetics in a UV/H2O2 system, hydroxyl radical rate constants (kOH) for 24 AFFF-derived polyfluoroalkyl precursors were measured to be 0.28 to 3.4 × 109 M-1 s-1. Differences in kOH were observed for compounds with differing headgroups and perfluoroalkyl chain lengths. Also, differences in kOH measured for the only relevant precursor standard available, n-[3-propyl]tridecafluorohexanesulphonamide (AmPr-FHxSA), as compared to AmPr-FHxSA present in AFFF suggest that intermolecular associations in the AFFF matrix may affect kOH. Considering environmentally relevant [•OH]ss, polyfluoroalkyl precursors are expected to exhibit half-lives of ∼8 days in sunlit surface waters and possibly as short as ∼2 h during oxygenation of Fe(II)-rich subsurface systems.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Radical Hidroxila , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Água/química
7.
Environ Sci Technol ; 57(13): 5203-5215, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36962006

RESUMO

Air-water interfacial retention of poly- and perfluoroalkyl substances (PFASs) is increasingly recognized as an important environmental process. Herein, column transport experiments were used to measure air-water interfacial partitioning values for several perfluoroalkyl ethers and for PFASs derived from aqueous film-forming foam, while batch experiments were used to determine equilibrium Kia data for compounds exhibiting evidence of rate-limited partitioning. Experimental results suggest a Freundlich isotherm best describes PFAS air-water partitioning at environmentally relevant concentrations (101-106 ng/L). A multiparameter regression analysis for Kia prediction was performed for the 15 PFASs for which equilibrium Kia values were determined, assessing 246 possible combinations of 8 physicochemical and system properties. Quantitative structure-property relationships (QSPRs) based on three to four parameters provided predictions of high accuracy without model overparameterization. Two QSPRs (R2 values of 0.92 and 0.83) were developed using an assumed average Freundlich n value of 0.65 and validated across a range of relevant concentrations for perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and hexafluoropropylene oxide-dimer acid (i.e., GenX). A mass action model was further modified to account for the changing ionic strength on PFAS air-water interfacial sorption. The final result was two distinct QSPRs for estimating PFAS air-water interfacial partitioning across a range of aqueous concentrations and ionic strengths.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Água , Fluorocarbonos/análise , Éteres , Poluentes Químicos da Água/análise , Concentração Osmolar
8.
Water Res ; 233: 119724, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801573

RESUMO

Both quantifiable and semi-quantifiable poly- and perfluoroalkyl substances (PFAS) were evaluated in the influent, effluent, and biosolids of 38 wastewater treatment plants. PFAS were detected in all streams at all facilities. For the means of the sums of detected, quantifiable PFAS concentrations were 98 ± 28 ng/L, 80 ± 24 ng/L, and 160,000 ± 46,000 ng/kg (dry weight basis) in the influent, effluent, and biosolids (respectively). In the aqueous influent and effluent streams this quantifiable PFAS mass was typically associated with perfluoroalkyl acids (PFAAs). In contrast, quantifiable PFAS in the biosolids were primarily polyfluoroalkyl substances that potentially serve as precursors to the more recalcitrant PFAAs. Results of the total oxidizable precursor (TOP) assay on select influent and effluent samples showed that semi-quantified (or, unidentified) precursors accounted for a substantial portion (21 to 88%) of the fluorine mass compared to that associated with quantified PFAS, and that this fluorine precursor mass was not appreciably transformed to perfluoroalkyl acids within the WWTPs, as influent and effluent precursor concentrations via the TOP assay were statistically identical. Evaluation of semi-quantified PFAS, consistent with results of the TOP assay, showed the presence of several classes of precursors in the influent, effluent, and biosolids; perfluorophosphonic acids (PFPAs) and fluorotelomer phosphate diesters (di-PAPs) occurred in 100 and 92% of biosolid samples, respectively. Analysis of mass flows showed that, for both quantified (on a fluorine mass basis) and semi-quantified PFAS, the majority of PFAS exited WWTPs through the aqueous effluent compared to the biosolids stream. Overall, these results highlight the importance of semi-quantified PFAS precursors in WWTPs, and the need to further understand the impacts of their ultimate fate in the environment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Biossólidos , Flúor , Fluorocarbonos/análise , Água
9.
Environ Sci Process Impacts ; 25(3): 405-414, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36629138

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are frequently found at high concentrations in the subsurface of aqueous film forming foam (AFFF)-impacted sites. Geochemical parameters affect the release of PFASs from source area soils into groundwater but have not been extensively studied for soils that have been historically impacted with AFFF. This study investigated the effects of pH and salt concentrations on release of anionic and zwitterionic PFASs from AFFF-impacted soils in flow-through saturated columns. High pH (10) columns with elevated sodium concentrations had higher cumulative masses eluted of several PFASs compared to pH 3 and pH 7 columns with lower sodium concentrations, likely caused by changes to soil organic matter surface charge. Four PFASs (e.g. 4:2 fluorotelomer sulfonate, perfluorobutane sulfonamido acetic acid) eluted significantly earlier in both pH 3 and pH 10/high NaCl columns compared to pH 7 columns. The results of this study suggest that shifts in pH for soils located at AFFF-impacted sites - particularly raising the pH - may mobilize sorbed PFASs, specifically longer-chain and zwitterionic compounds that are typically strongly sorbed to soil.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Solo , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Fenômenos Químicos , Água , Água Subterrânea/química
10.
Environ Sci Technol ; 57(5): 1940-1948, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36689630

RESUMO

While several studies have focused on perfluoroalkyl acid (PFAA) leaching from soils, field studies evaluating the relationship between PFAA mass removal and porewater concentrations as the PFAA source becomes depleted are lacking. Herein, in situ water flushing was performed at a site historically impacted with AFFF to accelerate the leaching of PFAAs from unsaturated soils in a highly characterized field test cell. Porous cup suction lysimeters were used to assess the changes in PFAA porewater concentrations as a function of PFAA mass removal from the unsaturated soils, where flushing was intermittently paused to determine ambient PFAA porewater concentrations. Results showed that the fractional decreases in PFAA porewater concentrations during flushing exceeded the fractional decrease in PFAA mass removal from the soil. PFOS porewater concentrations decrease by 76% (with negligible rebound) compared to only a 7.4% decrease in overall PFOS mass removed from the unsaturated zone. Overall, the results observed herein suggest that, when considering soil impacts to groundwater, less stringent soil cleanup criteria than those that consider an equivalent relationship between mass removal and mass discharge may be appropriate. In addition, remedial approaches that remove only a modest fraction of the PFAA soil mass may be protective of underlying groundwater, particularly for perfluorinated sulfonates with at least six carbons.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Água , Solo
11.
Water Res ; 230: 119522, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36577256

RESUMO

Perfluoroalkyl ether carboxylic acids (PFECAs) are a group of emerging recalcitrant contaminants that are being developed to replace legacy per- and polyfluoroalkyl substances (PFAS) in industrial applications and that are generated as by-products in fluoropolymer manufacturing. Here, we report on the removal and destruction of four structurally different PFECAs using an integrated anion exchange resin (AER) and electrochemical oxidation (ECO) treatment train. Results from this work illustrated that (1) flow-through columns packed with PFAS-selective AERs are highly effective for the removal of PFECAs and (2) PFECA affinity is strongly correlated with their hydrophobic features. Regeneration of the spent resin columns revealed that high percentage (e.g., 80%) of organic cosolvent is necessary for achieving 60-100% PFECA release, and regeneration efficiency was higher for a macroporous resin than a gel-type resin. Treatment of spent regenerants showed (1) >99.99% methanol removal was achieved by distillation, (2) >99.999% conversion of the four studied PFECAs was achieved during the ECO treatment of the still bottoms after 24 hours with an energy per order of magnitude of PFECA removal (EE/O) <1.03 kWh/m3 of total groundwater treated, and (3) >85% of the organic fluorine was recovered as inorganic fluoride. Trifluoroacetic acid (TFA), perfluoropropionic acid (PFPrA), and perfluoro-2-methoxyacetic acid (PFMOAA) were confirmed via high-resolution mass spectrometry as transformation products (TPs) in the treated still bottoms, and two distinctive degradation schemes and four reaction pathways are proposed for the four PFECAs. Lastly, dissolved organic matter (DOM) inhibited uptake, regeneration, and oxidation of PFECAs throughout the treatment train, suggesting pretreatment steps targeting DOM removal can enhance the system's treatment efficiency. Results from this work provide guidelines for developing effective separation-concentration-destruction treatment trains and meaningful insights for achieving PFECA destruction in impacted aquatic systems.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Éter , Resinas de Troca Aniônica , Ácidos Carboxílicos , Éteres , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
12.
Environ Sci Technol ; 56(20): 14774-14787, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36162863

RESUMO

UV-sulfite has been shown to effectively degrade per- and polyfluoroalkyl substances (PFASs) in single-solute experiments. We recently reported treatment of 15 PFASs, including perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl carboxylic acids (PFCAs), and fluorotelomer sulfonic acids (FTSs), detected in aqueous film-forming foam (AFFF) using high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) targeted analysis. Here, we extend the analysis within those original reaction solutions to include the wider set of PFASs in AFFF for which reactivity is largely unknown by applying recently established LC-QTOF-MS suspect screening and semiquantitative analysis protocols. Sixty-eight additional PFASs were detected (15 targeted + 68 suspect screening = 83 PFASs) with semiquantitative analysis, and their behavior was binned on the basis of (1) detection in untreated AFFF, (2) PFAS photogeneration, and (3) reactivity. These 68 structures account for an additional 20% of the total fluorine content in the AFFF (targeted + suspect screening = 57% of total fluorine content). Structure-reactivity trends were also revealed. During treatment, transformations of highly reactive structures containing sulfonamide (-SO2N-) and reduced sulfur groups (e.g., -S- and -SO-) adjacent to the perfluoroalkyl [F(CF2)n-] or fluorotelomer [F(CF2)n(CH2)2-] chain are likely sources of PFCA, PFSA, and FTS generation previously reported during the early stages of reactions. The results also show the character of headgroup moieties adjacent to the F(CF2)n-/F(CF2)n(CH2)2- chain (e.g., sulfur oxidation state, sulfonamide type, and carboxylic acids) and substitution along the F(CF2)n- chain (e.g., H-, ketone, and ether) together may determine chain length-dependent reactivity trends. The results highlight the importance of monitoring PFASs outside conventional targeted analytical methodologies.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Ácidos Carboxílicos/análise , Éteres , Flúor , Fluorocarbonos/análise , Cetonas , Espectrometria de Massas , Sulfitos , Sulfonamidas , Ácidos Sulfônicos , Enxofre , Água/química , Poluentes Químicos da Água/análise
13.
Water Res ; 223: 119019, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049246

RESUMO

This study reports the results of an 8-month pilot study comparing both regenerable and emerging single-use anion exchange resins (AERs) for treatment of per- and polyfluoroalkyl substances (PFASs) at a source zone impacted by historical use of aqueous film-forming foam (AFFF). Two regenerable (Purolite A860 and A520E) and three single-use (Purolite PFA694E, Calgon CalRes 2301, and Dowex PSR2+) AERs were tested in parallel, collecting effluent samples after treatment for 30-sec and 2-min total empty bed contact time (EBCT). Results demonstrate that single-use AERs significantly outperform regenerable resins, particularly for treatment of long-chain perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs). No detectable concentrations of ≥C7 PFCAs or PFSAs were observed within 150,000 bed volumes (BVs) after treatment with the single-use resins (2-min EBCT). Analysis of effluent samples following 30-sec EBCT treatment shows that even the shortest-chain PFSAs do not reach 50% breakthrough within the first 350,000 BVs, though differences in removal of short-chain PFCAs was less dramatic. The regenerable polyacrylic A860 resin performed very poorly compared to all polystyrene resins, with >90% breakthrough of all PFASs occurring within 10,000 BVs. The greater affinity of polystyrene resins is attributed to increased hydrophobic interactions in addition to electrostatic ion exchange. Analysis of breakthrough profiles reveals empirical correlation with ion exchange affinity coefficients (logKex) measured in batch experiments. Postmortem analysis of PFASs extracted from spent resins revealed chromatographic elution behavior and competition among PFASs for adsorption to the resins. PFSAs and long-chain PFCAs were preferentially adsorbed to earlier sections in the AER columns, whereas short-chain PFCAs were competitively displaced towards the later sections of the columns and into the effluent, consistent with effluent concentrations of the latter structures exceeding influent values. These results provide insights into the mechanisms that govern PFAS adsorption to AERs in real multisolute groundwater matrices and support findings from other diverse sites regarding PFAS affinity, elution behavior, and competition for exchange sites.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Resinas de Troca Aniônica/química , Ácidos Carboxílicos/análise , Fluorocarbonos/química , Projetos Piloto , Poliestirenos , Ácidos Sulfônicos , Poluentes Químicos da Água/química
14.
J Hazard Mater ; 440: 129782, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988483

RESUMO

Bench-scale experiments were performed to interrogate poly- and perfluoroalkyl substance (PFAS) enrichment in the water surface microlayer (SML). In initial experiments using electrolyte-only solutions, the perfluorooctane sulfonate (PFOS) and perfluorooctane carboxylate (PFOA) enrichment in the SML were reasonably (with a factor of 2) described by the Gibbs adsorption equation coupled with a Freundlich-based interfacial adsorption model. Enrichment in the SML among perfluorinated sulfonates and perfluorinated carboxylates of varying chain lengths was proportional to their surface activity. The PFOS enrichment factor (EF), defined as the PFAS concentration in the SML divided by the concentration in the bulk water, was 18 in a 200 mg/l NaCl solution. The presence of elevated organic carbon levels in synthetic surface waters inhibited PFAS accumulation in the SML, with resulting EF values of approximately 1 for all PFAS. However, in the presence of elevated organic levels coupled with foam, PFAS enrichment in the foam was observed, with a foam EF of 25 measured for PFOS in synthetic surface waters. PFAS EF values measured in several natural surface waters without foam showed little variation among the waters tested, with PFOS EF values ranging between 6 and 10. Together, these results suggest that PFAS accumulation in the SML is largely controlled by PFAS sorption at the air-water interface for the conditions examined in this study, and the presence of foam with natural organics enhances PFAS uptake at the water surface.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Aerossóis , Carbono , Fluorocarbonos/análise , Cloreto de Sódio , Água , Poluentes Químicos da Água/análise
15.
Environ Sci Technol ; 56(12): 7963-7975, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549168

RESUMO

Predicting the transport of perfluoroalkyl acids (PFAAs) in the vadose zone is critically important for PFAA site cleanup and risk mitigation. PFAAs exhibit several unusual and poorly understood transport behaviors, including partitioning to the air-water interface, which is currently the subject of debate. This study develops a novel use of quasi-saturated (residual air saturation) column experiments to estimate chemical partitioning parameters of both linear and branched perfluorooctane sulfonate (PFOS) in unsaturated soils. The ratio of linear-to-branched air-water interfacial partitioning constants for all six experiments was 1.62 ± 0.24, indicating significantly greater partitioning of linear PFOS isomers at the air-water interface. Standard breakthrough curve analysis and numerical inversion of HYDRUS models support the application of a Freundlich isotherm for PFOS air-water interfacial partitioning below a critical reference concentration (CRC). Data from this study and previously reported unsaturated column data on perfluorooctanoate (PFOA) were reevaluated to examine unsaturated systems for transport nonidealities. This reanalysis suggests both transport nonidealities and Freundlich isotherm behavior for PFOA below the CRC using drainage-based column methods, contrary to the assertions of the original authors. Finally, a combined Freundlich-Langmuir isotherm was proposed to describe PFAA air-water interfacial partitioning across the full range of relevant PFAA concentrations.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Caprilatos/análise , Fluorocarbonos/análise , Isomerismo , Porosidade , Água , Poluentes Químicos da Água/análise
16.
J Contam Hydrol ; 248: 104001, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367711

RESUMO

Field-deployed lysimeters were used to measure the concentrations of poly- and perfluoroalkyl substances (PFASs) in soil porewater at a site historically impacted with aqueous film forming foam (AFFF). Samples collected over a 49-day period showed that perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) were the PFASs with the highest concentrations in porewater, with concentrations of approximately 10,000 and 25,000 ng L-1, respectively. The corresponding average mass flux to underlying groundwater observed for PFOS and PFHxS was 28,000 ± 11,000 and 92,000 ± 32,000 ng m-2 d-1, respectively. Employing the use of batch desorption isotherms (soil:water slurries) to determine desorption Kd values resulted in an overestimation of PFAS porewater concentrations by a factor for 1.4 to 4. However, using the desorption Kd values from the batch desorption isotherms in combination with a PFAS mass balance that incorporated PFAS sorption at the air-water interface resulted in improved predictions of the PFAS porewater concentrations. This improvement was most notable for PFOS, where inclusion of air-water interfacial sorption resulted in a 58% reduction in the predicted PFOS porewater concentration and predicted PFOS porewater concentrations that were identical (within the 95% confidence interval) to the lysimeter measured PFOS porewater concentration. Overall these results highlight the potentially important role of air-water interfacial sorption on PFAS migration in AFFF-impacted unsaturated soils in an in situ field setting.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Solo , Água , Poluentes Químicos da Água/análise
17.
Water Res ; 217: 118405, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417820

RESUMO

Finished biosolids were collected and characterized from seven municipal water resource recovery facilities. Poly- and perfluoroalkyl substances (PFAS) for the 54 quantified in the biosolids ranged from 323 ± 14.1 to 1100 ± 43.8 µg/kg (dry weight basis). For all biosolids, greater than 75% of the PFAS fluorine mass was associated with precursors. Di-substituted polyfluorinated phosphate esters (diPAPs) were the most abundant PFAS identified in the biosolids. The total oxidizable precursor assay on biosolids extracts generally failed to quantify the amount of precursors present, in large part due to the fact that diPAPS were not fully transformed during the TOP assay. Outdoor biosolids column leaching experiments intended to simulate biosolids land application showed sustained PFAS leaching over the 6-month study duration. Perfluoroalkyl acid (PFAA) concentrations in leachate, when detected, typically ranged in the 10 s to 100 s of ng/L; no diPAPs were detected in the leachate. The PFAA leaching from the biosolids exceeded the PFAA mass initially present in the biosolids (typically by greater than an order of magnitude), but the cumulative PFAA mass leached did not exceed the molar equivalents that could be explained by transformation of quantified precursors. These results highlight the importance of PFAA precursors initially present in biosolids and their contribution to long term leaching of PFAAs from land-applied biosolids.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Biossólidos , Fluorocarbonos/análise , Solo , Poluentes Químicos da Água/análise
18.
Environ Sci Technol ; 55(23): 15744-15753, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34748313

RESUMO

Poly- and perfluorinated alkyl substances (PFASs) frequently co-occur with fuel-derived contaminants because of the use of aqueous film-forming foam (AFFF). Biosparging is a common remediation technology that injects oxygen into the saturated zone to encourage aerobic biodegradation, thereby altering aquifer redox conditions and potentially facilitating the biotransformation of polyfluorinated substances. Between 136 and 280 pore volumes of nitrogen-sparged or oxygen-sparged artificial groundwater amended with toluene were pumped through four saturated, AFFF-impacted soil columns to assess impacts on PFAS release and transformation. Column effluents and soils were analyzed for PFASs by high-resolution mass spectrometry. Significantly higher concentrations of five PFASs eluted from O2-sparged columns compared to N2-sparged columns shortly after sparging was initiated. The mass fractions eluted of many zwitterionic, sulfonamide-based PFASs were higher in both sets of columns than unaltered, non-biostimulated columns. Mass balance calculations suggested the transformation of sulfonamide-based precursors to perfluorinated sulfonamides (i.e., perfluorohexanesulfonamide) in oxygen- and nitrogen-sparged columns: recoveries of perfluorinated sulfonamides were 158-235% for C3-C6 homologs but recoveries of several prominent sulfonamide-based zwitterions were low. For example, the recovery of n-carboxyethyldimethyl-ammoniopropyl perfluorohexanesulfonamide was 9-13%. These results suggest biosparging can enhance the transformation and release of PFASs in saturated soils, which has important implications for site characterization and remediation.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Solo , Água , Poluentes Químicos da Água/análise
19.
Water Res ; 207: 117798, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34768102

RESUMO

Although anion exchange resin (AER) treatment is considered an effective technology for removing per- and polyfluoroalkyl substances (PFASs) from impacted water, the environmental impacts associated with AER regeneration have not been systematically explored. In particular, the trade-offs of altering the composition of the regeneration solution and disposing of or recycling the waste regeneration solution are not known. To fill these important gaps in the literature, this research conducted a comparative life cycle assessment (LCA) of an AER-based PFAS remediation system with different regeneration scenarios including disposing of waste regeneration solution via incineration, reusing the organic cosolvent and brine fractions of the waste regeneration solution, and altering the composition of the regeneration solution to avoid organic cosolvent or NaCl. The results show that disposing of waste regeneration solution via incineration, without recycling organic cosolvent or brine, had the greatest environmental impact, and that incineration accounted for the greatest impact among contributing processes. Recycling of the cosolvent (or cosolvent and brine) fraction of the waste regeneration solution resulted in lower environmental impacts due to reduced mass of waste disposed of via incineration. Replacing NaCl in the brine with an alternative salt resulted in higher environmental impacts, with salts derived from chemical production, such as ammonium chloride and potassium carbonate, showing the largest increases in impacts. The results of this research highlight the importance of understanding the fate of PFASs during incineration, and the need for PFAS destruction technologies that can be coupled to AER regeneration to avoid incineration.


Assuntos
Resinas de Troca Aniônica , Fluorocarbonos , Animais , Meio Ambiente , Fluorocarbonos/análise , Incineração , Estágios do Ciclo de Vida , Água
20.
Environ Sci Technol ; 55(21): 14617-14627, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34665614

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are highly mobile in the saturated subsurface, yet aqueous film-forming foam (AFFF)-impacted source zones appear to be long lasting PFAS reservoirs. This study examined the release of over one hundred anionic and zwitterionic PFASs from two AFFF-impacted surface soils under saturated conditions with packed soil columns. Perfluoroalkyl acids (PFAAs) were released more rapidly than their polyfluorinated precursors, while anionic PFASs that were present in partially uncharged states were released more slowly than PFASs that were present entirely as anions, as were zwitterionic PFASs with terminal cationic functional groups when compared with analogous zwitterions with only anionic terminal groups. Nonideal transport was observed in both per- and polyfluorinated classes, as soil column effluent concentrations of slowly released PFASs increased by up to 107-fold with sustained artificial groundwater flow. A flow-interruption experiment suggested the influence of rate-limited desorption on diverse PFAS classes, including PFAAs with as few as four perfluorinated carbons. These results suggest that during infiltration the slow, rate-limited desorption of anionic and zwitterionic PFAA precursors may result in these compounds comprising an increasingly large fraction of the remaining PFASs in AFFF-impacted surface soils.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Solo , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...