Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(8): 253, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970670

RESUMO

CONTEXT: Carbonyl compounds, especially aldehydes, emitted to the atmosphere, may suffer hydration in aerosols or water droplets in clouds. At the same time, they can react with hydroxyl radicals which may add or abstract hydrogen atoms from these species. The interplay between hydration and hydrogen abstraction is studied using density functional and quantum composite theoretical methods, both in the gas phase and in simulated bulk water. The H-abstraction from the aldehydic and geminal diol forms of formaldehyde, acetaldehyde, glycolaldehyde, glyoxal, methylglyoxal, and acrolein is studied to determine whether the substituent has any noticeable effect in the preference for the abstraction of one form or another. It is found that abstraction of the H-atom adjacent to the carbonyl group gives a more stable radical than same abstraction from the geminal diol in the case of formaldehyde, acetaldehyde, and glycolaldehyde. The presence of a delocalizing group in the Cα (a carbonyl group in glyoxal and methylglyoxal, and a vinyl group in acrolein), reverts this trend, and now the abstraction of the H-atom from the geminal diol gives more stable radicals. A further study was conducted abstracting hydrogen atoms from the other different positions in the species considered, both in the aldehydic and geminal diol forms. Only in the case of glycolaldehyde, the radical formed by H-abstraction from the -CH2OH group is more stable than any of the other radical species. Abstraction of the hydrogen atom in one of the hydroxyl groups in the geminal diol is equivalent to the addition of the •OH radical to the aldehyde. It leads, in some cases, to decomposition into a smaller radical and a neutral molecule. In these cases, some interesting theoretical differences are observed between the results in gas phase and (simulated) bulk solvent, as well as with respect to the method of calculation chosen. METHODS: DFT (M06-2X, B2PLYP, PW6B95), CCSD(T), and composite (CBS-QB3, jun-ChS, SCVECV-f12) methods using Dunning basis sets and extrapolation to the CBS limit were used to study the energetics of closed shell aldehydes in their keto and geminal-diol forms, as well as the radical derived from them by hydrogen abstraction. Both gas phase and simulated bulk solvent calculations were performed, in the last case using the Polarizable Continuum Model.

2.
J Phys Chem A ; 128(22): 4507-4516, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780772

RESUMO

The atmospheric α-pinene oxidation leads to three carboxylic acids: norpinonic acid (NPA), pinic acid (PA), and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA). In this study, the OH radical kinetics in the aqueous phase of these carboxylic acids were investigated at different temperatures and pH values of solutions. Activation parameters and the corresponding atmospheric lifetimes of the acids in the troposphere were derived. The overall second-order rate constants for the individual speciation forms of the acids (AH and A- for NPA; AH2, AH- and A2- for PA; and AH3, AH2-, AH2- and A3- for MBTCA) were determined. At 298 K, the rate constants for reactions of protonated forms (AHx) of NPA, PA, and MBTCA with •OH, were (1.5 ± 0.2) × 109 L mol-1 s-1, (2.4 ± 0.1) × 109 L mol-1 s-1, and (4.1 ± 0.6) × 108 L mol-1 s-1, respectively. For the fully deprotonated forms (Ax-) of studied acids, the second-order rate constants were (2.2 ± 0.2) × 109 L mol-1 s-1, (2.8 ± 0.1) × 109 L mol-1 s-1, and (10.2 ± 0.7) × 108 L mol-1 s-1 at 298 K, respectively. It was found that the reactions of NPA and PA with OH radicals are faster than with MBTCA. For MBTCA, the reaction rate depends on pH more strongly at elevated temperatures (>298 K). The atmospheric lifetimes of the acids considered due to their reactivity with •OH were calculated for different model scenarios at a temperature of 283 K and pH = 2 in the aqueous phase. For this purpose, liquid water content (LWC) was used for aerosols and clouds under storm conditions and at various aqueous-phase concentrations of OH radicals. The lifetimes decreased with increasing LWC (from 10-12 m3 m-3 in aerosol to 10-5 m3 m-3 in storms), indicating that the acids undergo significant aqueous processing under realistic atmospheric conditions. Besides, the aerosol systems appeared less effective in removing PA and NPA, with lifetimes ranging from hundreds of days to tens and hundreds of hours, respectively. Clouds were more effective, with lifetimes ranging from tens of hours to a single second or less. MBTCA, which dissolves better in water, was effectively removed in all systems, with the longest lifetime of approximately 90 min.

4.
J Dtsch Dermatol Ges ; 21(10): 1157-1168, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485573

RESUMO

BACKGROUND: TREATgermany is a multicenter registry including patients with moderate-to-severe atopic dermatitis (AD) from currently 74 study centers (university clinics, hospitals and practices) in Germany. As of August 31, 2021, 1,230 adult patients were enrolled. METHODS: In TREATgermany, patients and physicians fill in questionnaires pertaining to symptoms, disease severity, quality of life, depressiveness, and fatigue. In particular, limitations in work performance are assessed using the Work Limitations Questionnaire (WLQ). To assess associations between occupational performance/work limitations and symptoms, correlations and regression models were calculated. RESULTS: The examined sample of 228 employed patients reported an average of 6% at-work productivity loss within the past two weeks prior to enrolment in the registry. The WLQ productivity loss score was moderately associated with itch (r = 0.32) and sleep loss (r = 0.39) and strongly associated with depressive symptoms (r = 0.68) and fatigue (r = 0.60). CONCLUSIONS: The analyses of the registry data show that moderate-to-severe atopic dermatitis has a negative impact on the work productivity of the patients. The analyses further point out the relevant associations between work productivity, depressive symptoms, and fatigue highlighting the disease burden caused by the psychological components of AD.


Assuntos
Dermatite Atópica , Adulto , Humanos , Dermatite Atópica/diagnóstico , Dermatite Atópica/epidemiologia , Dermatite Atópica/complicações , Qualidade de Vida , Depressão/epidemiologia , Dados de Saúde Coletados Rotineiramente , Prurido/etiologia , Índice de Gravidade de Doença , Sono , Fadiga/epidemiologia , Fadiga/complicações
5.
J Am Chem Soc ; 145(29): 15652-15657, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462273

RESUMO

Halogen atoms are important atmospheric oxidants that have unidentified daytime sources from photochemical halide oxidation in sea salt aerosols. Here, we show that the photolysis of nitrate in aqueous chloride solutions generates nitryl chloride (ClNO2) in addition to Cl2 and HOCl. Experimental and modeling evidence suggests that O(3P) formed in the minor photolysis channel from nitrate oxidizes chloride to Cl2 and HOCl, which reacts with nitrite to form ClNO2. This chemistry is different than currently accepted mechanisms involving chloride oxidation by OH and could shift our understanding of daytime halogen cycling in the lower atmosphere.

6.
J Phys Chem A ; 127(31): 6495-6508, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37498295

RESUMO

T-dependent aqueous-phase rate constants were determined for the oxidation of the hydroxy aldehydes, glyceraldehyde, glycolaldehyde, and lactaldehyde, by the hydroxyl radicals (•OH), the sulfate radicals (SO4•-), and the nitrate radicals (NO3•). The obtained Arrhenius expressions for the oxidation by the •OH radical are: k(T,GLYCERALDEHYDE+OH•) = (3.3 ± 0.1) × 1010 × exp((-960 ± 80 K)/T)/L mol-1 s-1, k(T,GLYCOLALDEHYDE+OH•) = (4.3 ± 0.1) × 1011 × exp((-1740 ± 50 K)/T)/L mol-1 s-1, k(T,LACTALDEHYDE+OH•) = (1.6 ± 0.1) × 1011 × exp((-1410 ± 180 K)/T)/L mol-1 s-1; for the SO4•- radical: k(T,GLYCERALDEHYDE+SO4•-) = (4.3 ± 0.1) × 109 × exp((-1400 ± 50 K)/T)/L mol-1 s-1, k(T,GLYCOLALDEHYDE+SO4•-) = (10.3 ± 0.3) × 109 × exp((-1730 ± 190 K)/T)/L mol-1 s-1, k(T,LACTALDEHYDE+SO4•-) = (2.2 ± 0.1) × 109 × exp((-1030 ± 230 K)/T)/L mol-1 s-1; and for the NO3• radical: k(T,GLYCERALDEHYDE+NO3•) = (3.4 ± 0.2) × 1011 × exp((-3470 ± 460 K)/T)/L mol-1 s-1, k(T,GLYCOLALDEHYDE+NO3•) = (7.8 ± 0.2) × 1011 × exp((-3820 ± 240 K)/T)/L mol-1 s-1, k(T,LACTALDEHYDE+NO3•) = (4.3 ± 0.2) × 1010 × exp((-2750 ± 340 K)/T)/L mol-1 s-1, respectively. Targeted simulations of multiphase chemistry reveal that the oxidation by OH radicals in cloud droplets is important under remote and wildfire influenced continental conditions due to enhanced partitioning. There, the modeled average aqueous •OH concentration is 2.6 × 10-14 and 1.8 × 10-14 mol L-1, whereas it is 7.9 × 10-14 and 3.5 × 10-14 mol L-1 under wet particle conditions. During cloud periods, the aqueous-phase reactions by •OH contribute to the oxidation of glycolaldehyde, lactaldehyde, and glyceraldehyde by about 35 and 29%, 3 and 3%, and 47 and 37%, respectively.

7.
Sci Total Environ ; 879: 162622, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36878296

RESUMO

C5- and C6- unsaturated oxygenated organic compounds emitted by plants under stress like cutting, freezing or drying, known as Green Leaf Volatiles (GLVs), may clear some of the existing uncertainties in secondary organic aerosol (SOA) budget. The transformations of GLVs are a potential source of SOA components through photo-oxidation processes occurring in the atmospheric aqueous phase. Here, we investigated the aqueous photo-oxidation products from three abundant GLVs (1-penten-3-ol, (Z)-2-hexen-1-ol, and (E)-2-hexen-1-al) induced by OH radicals, carried out in a photo-reactor under simulated solar conditions. The aqueous reaction samples were analyzed using advanced hyphenated mass spectrometry techniques: capillary gas chromatography mass spectrometry (c-GC-MS); and reversed-phase liquid chromatography high resolution mass spectrometry (LC-HRMS). Using carbonyl-targeted c-GC-MS analysis, we confirmed the presence of propionaldehyde, butyraldehyde, 1-penten-3-one, and 2-hexen-1-al in the reaction samples. The LC-HRMS analysis confirmed the presence of a new carbonyl product with the molecular formula C6H10O2, which probably bears the hydroxyhexenal or hydroxyhexenone structure. Density functional theory (DFT)-based quantum calculations were used to evaluate the experimental data and obtain insight into the formation mechanism and structures of the identified oxidation products via the addition and hydrogen-abstraction pathways. DFT calculations highlighted the importance of the hydrogen abstraction pathway leading to the new product C6H10O2. Atmospheric relevance of the identified products was evaluated using a set of physical property data like Henry's law constant (HLC) and vapor pressure (VP). The unknown product of molecular formula C6H10O2 has higher HLC and lower VP than the parent GLV and thus has potential to remain in the aqueous phase leading to possible aqueous SOA formation. Other observed carbonyl products are likely first stage oxidation products and precursors of aged SOA.

8.
Environ Sci Technol ; 57(5): 1930-1939, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36689325

RESUMO

The photosensitized transformation of organic chemicals is an important degradation mechanism in natural surface waters, aerosols, and water films on surfaces. Dissolved organic matter including humic-like substances (HS), acting as photosensitizers that participate in electron transfer reactions, can generate a variety of reactive species, such as OH radicals and excited triplet-state HS (3HS*), which promote the degradation of organic compounds. We use phthalate esters, which are important contaminants found in wastewaters, landfills, soils, rivers, lakes, groundwaters, and mine tailings. We use phthalate esters as probes to study the reactivity of HS irradiated with artificial sunlight. Phthalate esters with different side-chain lengths were used as probes for elucidation of reaction mechanisms using 2H and 13C isotope fractionation. Reference experiments with the artificial photosensitizers 4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein (Rose Bengal), 3-methoxy-acetophenone (3-MAP), and 4-methoxybenzaldehyde (4-MBA) yielded characteristic fractionation factors (-4 ± 1, -4 ± 2, and -4 ± 1‰ for 2H; 0.7 ± 0.2, 1.0 ± 0.4, and 0.8 ± 0.2‰ for 13C), allowing interpretation of reaction mechanisms of humic substances with phthalate esters. The correlation of 2H and 13C fractions can be used diagnostically to determine photosensitized reactions in the environment and to differentiate among biodegradation, hydrolysis, and photosensitized HS reaction.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água , Substâncias Húmicas/análise , Ésteres , Fármacos Fotossensibilizantes , Isótopos de Carbono , Poluentes Químicos da Água/análise , Fotólise
9.
J Phys Chem A ; 126(46): 8727-8740, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36367836

RESUMO

Reactions in the atmospheric aqueous phase are an important source of secondary organic aerosols (SOA). Within the present study, the reactions of triplet-state imidazole-2-carboxaldehyde (32-IC*) with methyl vinyl ketone (MVK, R1), methacrolein (MACR, R2), and methacrylic acid (MAA, R3), as well as the reaction of triplet-state 3,4-dimethoxybenzaldehyde (3DMB*) with the unsaturated compounds (MVK, R4), (MACR, R5), and (MAA, R6), in the aqueous phase were investigated using laser flash excitation-laser long path absorption and ultraperformance liquid chromatography coupled with high definition electrospray ionization spectrometry. The second-order reaction constants for 32-IC* were determined to be k1 = (1.0 ± 0.1) × 109 L mol-1 s-1 at pH 4-5 and 9, k2 = (1.4 ± 0.4) × 109 L mol-1 s-1 and (1.5 ± 0.1) × 109 L mol-1 s-1 at pH 4-5 and 9, and k3 = (1.4 ± 0.4) × 109 L mol-1 s-1 and (1.1 ± 0.4) × 108 L mol-1 s-1 at pH 4-5 and 9, respectively. The main products of the [2 + 2] photocycloaddition reactions of 32-IC* with both monomer and dimer of MVK as well as MACR were characterized. Similarly, the [2 + 2] photocycloaddition of the carbonyl of the excited triplet state of 3,4-dimethoxybenzaldehyde (3DMB*) with MVK was observed. The second order rate constants for the reactions of 3DMB* were determined: k4 = (1.5 ± 0.2) × 108 L mol-1 s-1, k5 = (2.8 ± 0.5) × 108 L mol-1 s-1, and k6 = (5.2 ± 1.2) × 106 L mol-1 s-1 at pH 9. The studied reactions show that different triplet photosensitizers react with strongly varying rate constants. Advanced CAPRAM process model studies show that active photosensitizers such as 3DMB* can quickly react with unsaturated organic compounds under deliquesced aerosol conditions modifying SOA, while the quenching with oxygen dominates the excited photosensitizer loss under cloud conditions.

10.
J Phys Chem A ; 126(36): 6244-6252, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057982

RESUMO

Tartaric acid and mucic acid are dicarboxylic acids (DCAs), a substance class often found in atmospheric aerosols and cloud droplets. The hydroxyl radical (•OH)-induced oxidation in the aqueous phase is known to be an important loss process of organic compounds such as DCAs. However, the study of •OH kinetics of DCAs in the aqueous phase is still incomplete. In the present study, the rate constants of the •OH reactions of tartaric acid and mucic acid in the aqueous phase were determined by the thiocyanate competition kinetics method as a function of temperature and pH. The following T-dependent Arrhenius expressions (in units of L mol-1 s-1) were first derived for the •OH reactions with tartaric acid─k(T, H2A) = (3.3 ± 0.1) × 1010 exp[(-1350 ± 110 K)/T], k(T, HA-) = (3.6 ± 0.1) × 1010 exp[(-580 ± 110 K)/T], and k(T, A2-) = (3.3 ± 0.1) × 1010 exp[(-1190 ± 170 K)/T]─as well as mucic acid─k(T, H2A) = (2.2 ± 0.1) × 1010 exp[(-1140 ± 150 K)/T], k(T, HA-) = (4.8 ± 0.1) × 1010 exp[(-1280 ± 170 K)/T], and k(T, A2-) = (2.1 ± 0.1) × 1010 exp[(-970 ± 70 K)/T]. A general trend of the •OH rate constant is found as kA2- > kHA- > kH2A. The pH- and temperature-dependent rate constants of the OH radical reactions allow an accurate description of the source and sink processes in the tropospheric aqueous phase.


Assuntos
Radical Hidroxila , Água , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Cinética , Açúcares Ácidos , Tartaratos , Temperatura
11.
Phys Chem Chem Phys ; 24(18): 11054-11065, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471651

RESUMO

Glycine, alanine, serine, and threonine are essential amino acids originating from biological activities. These substances can be emitted into the atmosphere directly. In the present study, the aqueous phase reaction kinetics of hydroxyl radicals (˙OH) with the four amino acids is investigated using the competition kinetics method under controlled temperature and pH conditions. The following T-dependent Arrhenius expressions are derived for the ˙OH reactions with glycine, k(T, H2A+) = (9.1 ± 0.3) × 109 × exp[(-2360 ± 230 K)/T], k(T, HA±) = (1.3 ± 0.1) × 1010 × exp[(-2040 ± 240 K)/T]; alanine, k(T, H2A+) = (1.4 ± 0.1) × 109 × exp[(-1120 ± 320 K)/T], k(T, HA±) = (5.5 ± 0.2) × 109 × exp[(-1300 ± 200 K)/T]; serine, k(T, H2A+) = (1.1 ± 0.1) × 109 × exp[(-470 ± 150 K)/T], k(T, HA±) = (3.9 ± 0.1) × 109 × exp[(-720 ± 130 K)/T]; and threonine, k(T, H2A+) = (5.0 ± 0.1) × 1010 × exp[(-1500 ± 100 K)/T], k(T, HA±) = (3.3 ± 0.1) × 1010 × exp[(-1320 ± 90 K)/T] (in units of L mol-1 s-1). The energy barriers of the ˙OH-induced H atom abstractions were simulated by the density functional theory (DFT) calculation performed with GAUSSIAN using the method of M06-2X and the basis set of 6-311++G(3df,2p). According to the calculation results, the -COOH and -NH3+ groups with strong negative inductive effects increase the energy barriers and thus decrease the ˙OH reaction rate constants. In contrast, the presence of a -OH or -CH3 group with weak negative or positive inductive effects can reduce energy barriers and hence increase the ˙OH reaction rate constants. To improve the previous structure-activity relationship, the contribution factors of -NH3+ at Cα-atom and Cß-atom are determined as 0.07 and 0.15, respectively. Aqueous phase ˙OH oxidation acts as an important sink of the amino acids in the atmosphere, and can be accurately described by the obtained Arrhenius expressions under atmospheric conditions.


Assuntos
Serina , Treonina , Alanina , Glicina , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Cinética , Temperatura
12.
Atmos Chem Phys ; 21(17)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34675968

RESUMO

The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools.

13.
Environ Sci Technol ; 55(20): 13666-13676, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34583512

RESUMO

Green plants exposed to abiotic or biotic stress release C-5 and C-6 unsaturated oxygenated hydrocarbons called Green Leaf Volatiles (GLVs). GLVs partition into tropospheric waters and react to form secondary organic aerosol (SOA). We explored the kinetics of aqueous-phase reactions of 1-penten-3-ol (PENTOL), (Z)-2-hexen-1-ol (HEXOL), and (E)-2-hexen-1-al (HEXAL) with SO4•-, •OH, and NO3•. At 298 K, the rate constants for reactions of PENTOL, HEXOL, and HEXAL with SO4•- were, respectively, (9.4 ± 1.0) × 108 L mol-1 s-1, (2.5 ± 0.3) × 109 L mol-1 s-1, and (4.8 ± 0.2) × 108 L mol-1 s-1; with •OH - (6.3 ± 0.1) × 109 L mol-1 s-1, (6.7 ± 0.3) × 109 L mol-1 s-1, and (4.8 ± 0.3) × 109 L mol-1 s-1; and with NO3• - (1.5 ± 0.15) × 108 L mol-1 s-1, (8.4 ± 2.3) × 108 L mol-1 s-1, and (3.0 ± 0.7) × 107 L mol-1 s-1. The rate constants increased weakly with temperatures ranging from 278 to 318 K. The diffusional limitations of the rate constants appeared significant only for the GLV-•OH reactions. The aqueous-phase reactions appeared negligible in deliquescent aerosol and haze water but not in clouds and rains. The atmospheric lifetimes of GLVs decreased from many days to hours with increasing liquid water content and radicals' concentration.


Assuntos
Nitratos , Água , Cinética , Folhas de Planta , Sulfatos
14.
J Phys Chem A ; 125(23): 5078-5095, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34096724

RESUMO

Secondary organic aerosol formation in the atmospheric aqueous/particulate phase by photosensitized reactions is currently subject to uncertainties. To understand the impact of photosensitized reactions, photophysical and -chemical properties of photosensitizers, kinetic data, and reaction mechanisms of these processes are required. The photophysical properties of acetophenones, benzaldehydes, benzophenones, and naphthalenes were investigated in aqueous solution using laser flash excitation. Quantum yields of excited photosensitizers were determined giving values between 0.06-0.80 at 298 K and pH = 5. Molar absorption coefficients (εmax(3PS*) = (0.8-13) × 104 L mol-1 cm-1), decay rate constants in water (k1st = (9.4 ± 0.5) × 102 to (2.2 ± 0.1) × 105 s-1), and quenching rate constants with oxygen (kq(O2) = (1.7 ± 0.1-4.4 ± 0.4) × 109 L mol-1 s-1) of the excited triplet states were determined at 298 K and pH = 5. Photosensitized reactions of carboxylic acids and alkenes show second-order rate constants in the range of (37 ± 7.0-0.55 ± 0.1) × 104 and (27 ± 5.0-0.04 ± 0.01) × 108 L mol-1 s-1. The results show that different compound classes act differently as a photosensitizer and can be a sink for certain organic compounds in the atmospheric aqueous phase.

15.
Environ Sci Technol ; 55(12): 7818-7830, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34019409

RESUMO

During haze periods in the North China Plain, extremely high NO concentrations have been observed, commonly exceeding 1 ppbv, preventing the classical gas-phase H2O2 formation through HO2 recombination. Surprisingly, H2O2 mixing ratios of about 1 ppbv were observed repeatedly in winter 2017. Combined field observations and chamber experiments reveal a photochemical in-particle formation of H2O2, driven by transition metal ions (TMIs) and humic-like substances (HULIS). In chamber experiments, steady-state H2O2 mixing ratios of 116 ± 83 pptv were observed upon the irradiation of TMI- and HULIS-containing particles. Correspondingly, H2O2 formation rates of about 0.2 ppbv h-1 during the initial irradiation periods are consistent with the H2O2 rates observed in the field. A novel chemical mechanism was developed explaining the in-particle H2O2 formation through a sequence of elementary photochemical reactions involving HULIS and TMIs. Dedicated box model studies of measurement periods with relative humidity >50% and PM2.5 ≥ 75 µg m-3 agree with the observed H2O2 concentrations and time courses. The modeling results suggest about 90% of the particulate sulfate to be produced from the SO2 reaction with OH and HSO3- oxidation by H2O2. Overall, under high pollution, the H2O2-caused sulfate formation rate is above 250 ng m-3 h-1, contributing to the sulfate formation by more than 70%.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Substâncias Húmicas/análise , Peróxido de Hidrogênio , Material Particulado/análise , Sulfatos/análise
16.
Nat Commun ; 12(1): 1769, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741973

RESUMO

In viscous, organic-rich aerosol particles containing iron, sunlight may induce anoxic conditions that stabilize reactive oxygen species (ROS) and carbon-centered radicals (CCRs). In laboratory experiments, we show mass loss, iron oxidation and radical formation and release from photoactive organic particles containing iron. Our results reveal a range of temperature and relative humidity, including ambient conditions, that control ROS build up and CCR persistence in photochemically active, viscous organic particles. We find that radicals can attain high concentrations, altering aerosol chemistry and exacerbating health hazards of aerosol exposure. Our physicochemical kinetic model confirmed these results, implying that oxygen does not penetrate such particles due to the combined effects of fast reaction and slow diffusion near the particle surface, allowing photochemically-produced radicals to be effectively trapped in an anoxic organic matrix.

17.
Science ; 370(6521): 1162-1163, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33273085

Assuntos
Som , Ultrassom , Difusão
18.
J Phys Chem A ; 124(48): 10029-10039, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33202138

RESUMO

Photosensitized reactions of organic compounds in the atmospheric aqueous and particle phase might be potential sources for secondary organic aerosol (SOA) formation, addressed as aqueous SOA. However, data regarding the photophysical properties of photosensitizers, their kinetics, as well as reaction mechanisms of such processes in the aqueous/particle phase are scarce. The present study investigates the determination of the photophysical properties of imidazole-2-carboxaldehyde, 2-furaldehyde, and 2-acetylfuran as potential photosensitizers using laser flash excitation in aqueous solution. Quantum yields of the formation of the excited photosensitizers were obtained by a scavenging method with thiocyanate, resulting in values between 0.86 and 0.96 at 298 K and pH = 5. The time-resolved absorbance spectra of the excited photosensitizers were measured, and their molar attenuation coefficients were determined ranging between (0.30 and 1.4) × 104 L mol-1 cm-1 at their absorbance maxima (λmax = 335-440 nm). Additionally, the excited photosensitizers are quenched by water and molecular oxygen, resulting in quenching rate constants of k1st = (1.0 ± 0.2-1.8 ± 0.2) × 105 s-1 and kq(O2) = (2.1 ± 0.2-2.7 ± 0.2) × 109 L mol-1 s-1, respectively.

19.
Environ Sci Technol ; 54(7): 3767-3782, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32157872

RESUMO

Organosulfates (OSs), also referred to as organic sulfate esters, are well-known and ubiquitous constituents of atmospheric aerosol particles. Commonly, they are assumed to form upon mixing of air masses of biogenic and anthropogenic origin, that is, through multiphase reactions between organic compounds and acidic sulfate particles. However, in contrast to this simplified picture, recent studies suggest that OSs may also originate from purely anthropogenic precursors or even directly from biomass and fossil fuel burning. Moreover, besides classical OS formation pathways, several alternative routes have been discovered, suggesting that OS formation possibly occurs through a wider variety of formation mechanisms in the atmosphere than initially expected. During the past decade, OSs have reached a constantly growing attention within the atmospheric science community with evermore studies reporting on large numbers of OS species in ambient aerosol. Nonetheless, estimates on OS concentrations and implications on atmospheric physicochemical processes are still connected to large uncertainties, calling for combined field, laboratory, and modeling studies. In this Critical Review, we summarize the current state of knowledge in atmospheric OS research, discuss unresolved questions, and outline future research needs, also in view of reductions of anthropogenic sulfur dioxide (SO2) emissions. Particularly, we focus on (1) field measurements of OSs and measurement techniques, (2) formation pathways of OSs and their atmospheric relevance, (3) transformation, reactivity, and fate of OSs in atmospheric particles, and (4) modeling efforts of OS formation and their global abundance.


Assuntos
Atmosfera , Dióxido de Enxofre , Aerossóis , Compostos Orgânicos , Sulfatos
20.
Atmos Chem Phys ; 20(8): 4809-4888, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33424953

RESUMO

Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semi-volatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally-constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicates acidity may be relatively constant due to the semi-volatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...