Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(9): R335-R337, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714157

RESUMO

A new study compiles compelling evidence that stingless bees construct their brood combs in a self-organised manner in which local modification of a structure stimulates further modifications, a process known as stigmergy.


Assuntos
Comportamento de Nidação , Animais , Abelhas/fisiologia , Comportamento de Nidação/fisiologia , Comportamento Social , Comportamento Animal/fisiologia
2.
J Sports Sci ; : 1-12, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263749

RESUMO

Rugby sevens is a small-sided variant of rugby union characterised by fast-moving, high-intensity gameplay and is an example of a team invasion sport, where players work together to achieve a shared goal of attacking and defending as a cohesive unit. The dynamics of such sports can be viewed as self-organizing systems, where individual players form collective patterns without a centralized mechanism of control. Inspired by the analysis of collective movement in animals, this novel study investigates the emergent patterns of order and disorder in sub-elite female rugby sevens using order parameters (typically used to analyse particle systems) to characterize the team's collective state during different phases of play. The findings demonstrate that defensive gameplay is more ordered, with more compact formations, compared to attacking play, and there is a correlation between alignment/order in player motion and group speed. The work further suggests that the collective states formed differ between sequences of play with different levels of ground gained by the attacking team. These observations provide a sound justification for player training with a focus on cohesive defensive movements to resist disruptions from opposing attackers, while employing attacking tactics that disrupt the cohesion and order of opposing teams.

3.
PLoS One ; 18(9): e0286810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37676869

RESUMO

Force mapping is an established method for inferring the underlying interaction rules thought to govern collective motion from trajectory data. Here we examine the ability of force maps to reconstruct interactions that govern individual's tendency to orient, or align, their heading within a moving group, one of the primary factors thought to drive collective motion, using data from three established general collective motion models. Specifically, our force maps extract how individuals adjust their direction of motion on average as a function of the distance to neighbours and relative alignment in heading with these neighbours, or in more detail as a function of the relative coordinates and relative headings of neighbours. We also examine the association between plots of local alignment and underlying alignment rules. We find that the simpler force maps that examined changes in heading as a function of neighbour distances and differences in heading can qualitatively reconstruct the form of orientation interactions, but also overestimate the spatial range over which these interactions apply. More complex force maps that examine heading changes as a function of the relative coordinates of neighbours (in two spatial dimensions), can also reveal underlying orientation interactions in some cases, but are relatively harder to interpret. Responses to neighbours in both the simpler and more complex force maps are affected by group-level patterns of motion. We also find a correlation between the sizes of regions of high alignment in local alignment plots and the size of the region over which alignment rules apply when only an alignment interaction rule is in action. However, when data derived from more complex models is analysed, the shapes of regions of high alignment are clearly influenced by emergent patterns of motion, and these regions of high alignment can appear even when there is no explicit direct mechanism that governs alignment.


Assuntos
Comportamento de Massa , Movimento , Orientação Espacial , Comportamento Social , Movimento (Física) , Locomoção , Atividade Motora , Animais , Modelos Teóricos
4.
R Soc Open Sci ; 10(8): 230579, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564068

RESUMO

Immunocompetence and reproduction are among the most important determinants of fitness. However, energetic and metabolic constraints create conflict between these two life-history traits. While many studies have explored the relationship between immune activity and reproductive fitness in birds and mammals inoculated with bacterial endotoxin, very few have focused on fish. Fish have been neglected in this area due, in part, to the claim that they are largely resistant to the immune effects of endotoxins. However, the present study suggests that they are susceptible to significant effects with respect to reproductive behaviour. Here, we examined the reproductive behaviour of male guppies following exposure to bacterial lipopolysaccharides (LPS) in comparison to that of male guppies in a control treatment. Additionally, we investigated the responses of females to these males. We show that although immune challenge does not suppress general activity in male guppies, it significantly reduces mating effort. While females showed no difference in general activity as a function of male treatments, they did exhibit reduced group cohesion in the presence of LPS-exposed males. We discuss this in the context of sickness behaviours, social avoidance of immune-challenged individuals and the effects of mounting an immune response on reproductive behaviour.

6.
Proc Biol Sci ; 289(1969): 20212361, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35193400

RESUMO

Antarctic krill swarms are one of the largest known animal aggregations, and yet, despite being the keystone species of the Southern Ocean, little is known about how swarms are formed and maintained. Understanding the local interactions between individuals that provide the basis for these swarms is fundamental to knowing how swarms arise in nature, and what potential factors might lead to their breakdown. Here, we analysed the trajectories of captive, wild-caught krill in 3D to determine individual-level interaction rules and quantify patterns of information flow. Our results demonstrate that krill align with near neighbours and that they regulate both their direction and speed relative to the positions of groupmates. These results suggest that social factors are vital to the formation and maintenance of swarms. Furthermore, krill operate a novel form of collective organization, with measures of information flow and individual movement adjustments expressed most strongly in the vertical dimension, a finding not seen in other swarming species. This research represents a vital step in understanding the fundamentally important swarming behaviour of krill.


Assuntos
Euphausiacea , Animais , Regiões Antárticas , Euphausiacea/fisiologia
7.
Bull Math Biol ; 84(1): 16, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34921628

RESUMO

Emergent patterns of collective motion are thought to arise from local rules of interaction that govern how individuals adjust their velocity in response to the relative locations and velocities of near neighbours. Many models of collective motion apply rules of interaction over a metric scale, based on the distances to neighbouring group members. However, empirical work suggests that some species apply interactions over a topological scale, based on distance determined neighbour rank. Here, we modify an important metric model of collective motion (Couzin et al. in J Theor Biol 218(1):1-11, 2002), so that interactions relating to orienting movements with neighbours and attraction towards more distant neighbours operate over topological scales. We examine the emergent group movement patterns generated by the model as the numbers of neighbours that contribute to orientation- and attraction-based velocity adjustments vary. Like the metric form of the model, simulated groups can fragment (when interactions are influenced by less than 10-15% of the group), swarm and move in parallel, but milling does not occur. The model also generates other cohesive group movements including cases where groups exhibit directed motion without strong overall alignment of individuals. Multiple emergent states are possible for the same set of underlying model parameters in some cases, suggesting sensitivity to initial conditions, and there is evidence that emergent states of the system depend on the history of the system. Groups that do not fragment tend to stay relatively compact in terms of neighbour distances. Even if a group does fragment, individuals remain relatively close to near neighbours, avoiding complete isolation.


Assuntos
Modelos Biológicos , Comportamento Social , Humanos , Conceitos Matemáticos , Movimento (Física) , Movimento
8.
J Math Biol ; 83(3): 23, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351535

RESUMO

What will happen when two invasive species are competing and invading the environment at the same time? In this paper, we try to find all the possible scenarios in such a situation based on the diffusive Lotka-Volterra competition system with free boundaries. In a recent work, Du and Wu (Calc Var Partial Differ Equ, 57(2):52, 2018) considered a weak-strong competition case of this model (with spherical symmetry) and theoretically proved the existence of a "chase-and-run coexistence" phenomenon, for certain parameter ranges when the initial functions are chosen properly. Here we use a numerical approach to extend the theoretical research of Du and Wu (Calc Var Partial Differ Equ, 57(2):52, 2018) in several directions. Firstly, we examine how the longtime dynamics of the model changes as the initial functions are varied, and the simulation results suggest that there are four possible longtime profiles of the dynamics, with the chase-and-run coexistence the only possible profile when both species invade successfully. Secondly, we show through numerical experiments that the basic features of the model appear to be retained when the environment is perturbed by periodic variation in time. Thirdly, our numerical analysis suggests that in two space dimensions the population range and the spatial population distribution of the successful invader tend to become more and more circular as time increases no matter what geometrical shape the initial population range possesses. Our numerical simulations cover the one space dimension case, and two space dimension case with or without spherical symmetry. The numerical methods here are based on that of Liu et al. (Mathematics, 6(5):72, 2018, Int J Comput Math, 97(5): 959-979, 2020). In the two space dimension case without radial symmetry, the level set method is used, while the front tracking method is used for the remaining cases. We hope the numerical observations in this paper can provide further insights to the biological invasion problem, and also to future theoretical investigations. More importantly, we hope the numerical analysis may reach more biologically oriented experts and inspire applications of some refined versions of the model tailored to specific real world biological invasion problems.


Assuntos
Espécies Introduzidas , Modelos Biológicos , Simulação por Computador , Difusão , Dinâmica Populacional
9.
PLoS One ; 16(5): e0251970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34029340

RESUMO

Movement, positioning and coordination of player formations is a key aspect for the performance of teams within field-based sports. The increased availability of player tracking data has given rise to numerous studies that focus on the relationship between simple descriptive statistics surrounding team formation and performance. While these existing approaches have provided a high-level a view of team-based spatial formations, there is limited research on the nature of collective movement across players within teams and the establishment of stable collective states within game play. This study draws inspiration from the analysis of collective movement in nature, such as that observed within schools of fish and flocking birds, to explore the existence of collective states within the phases of play in soccer. Order parameters and metrics describing group motion and shape are derived from player movement tracks to uncover the nature of the team's collective states and transitions. This represents a unique addition to the current body of work around the analysis of player movement in team sports. The results from this study demonstrate that sequences of ordered collective behaviours exist with relatively rapid transitions between highly aligned polar and un-ordered swarm behaviours (and vice-versa). Defensive phases of play have a higher proportion of ordered team movement than attacking phases, indicating that movements linked with attacking tactics, such as player dispersion to generate passing and shooting opportunities leads to lower overall collective order. Exploration within this study suggests that defensive tactics, such as reducing the depth or width to close passing opportunities, allows for higher team movement speeds and increased levels of collective order. This study provides a novel view of player movement by visualising the collective states present across the phases of play in football.


Assuntos
Desempenho Atlético , Comportamento Competitivo , Futebol , Adulto , Humanos , Masculino , Desempenho Atlético/fisiologia , Comportamento Competitivo/fisiologia , Entropia , Movimento/fisiologia , Futebol/fisiologia , Esportes/fisiologia
10.
PLoS One ; 15(12): e0243631, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296438

RESUMO

Groups of animals coordinate remarkable, coherent, movement patterns during periods of collective motion. Such movement patterns include the toroidal mills seen in fish shoals, highly aligned parallel motion like that of flocks of migrating birds, and the swarming of insects. Since the 1970's a wide range of collective motion models have been studied that prescribe rules of interaction between individuals, and that are capable of generating emergent patterns that are visually similar to those seen in real animal group. This does not necessarily mean that real animals apply exactly the same interactions as those prescribed in models. In more recent work, researchers have sought to infer the rules of interaction of real animals directly from tracking data, by using a number of techniques, including averaging methods. In one of the simplest formulations, the averaging methods determine the mean changes in the components of the velocity of an individual over time as a function of the relative coordinates of group mates. The averaging methods can also be used to estimate other closely related quantities including the mean relative direction of motion of group mates as a function of their relative coordinates. Since these methods for extracting interaction rules and related quantities from trajectory data are relatively new, the accuracy of these methods has had limited inspection. In this paper, we examine the ability of an averaging method to reveal prescribed rules of interaction from data generated by two individual based models for collective motion. Our work suggests that an averaging method can capture the qualitative features of underlying interactions from trajectory data alone, including repulsion and attraction effects evident in changes in speed and direction of motion, and the presence of a blind zone. However, our work also illustrates that the output from a simple averaging method can be affected by emergent group level patterns of movement, and the sizes of the regions over which repulsion and attraction effects are apparent can be distorted depending on how individuals combine interactions with multiple group mates.


Assuntos
Comportamento Animal , Movimento , Animais , Simulação por Computador , Modelos Biológicos , Comportamento Social
11.
R Soc Open Sci ; 4(9): 170312, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28989737

RESUMO

The coordinated and synchronized movement of animals in groups often referred to as collective motion emerges through the interactions between individual animals within the group. Factors which affect these interactions have the potential to shape collective movement. One such factor is familiarity, or the tendency to bias behaviour towards individuals as a result of social recognition. We examined the effect of familiarity on the expression of collective motion in small shoals of female guppies (Poecilia reticulata). Groups comprising familiar individuals were more strongly polarized than groups of unfamiliar individuals, particularly when in novel surroundings. The ability to form more strongly polarized shoals potentially promotes information transfer and enhances the anti-predator benefits of grouping.

12.
R Soc Open Sci ; 4(7): 170043, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28791135

RESUMO

Collective motion describes the global properties of moving groups of animals and the self-organized, coordinated patterns of individual behaviour that produce them. We examined the group-level patterns and local interactions between individuals in wild, free-ranging shoals of three-spine sticklebacks, Gasterosteus aculeatus. Our data reveal that the highest frequencies of near-neighbour encounters occur at between one and two body lengths from a focal fish, with the peak frequency alongside a focal individual. Fish also show the highest alignment with these laterally placed individuals, and generally with animals in front of themselves. Furthermore, fish are more closely matched in size, speed and orientation to their near neighbours than to more distant neighbours, indicating local organization within groups. Among the group-level properties reported here, we find that polarization is strongly influenced by group speed, but also the variation in speed among individuals and the nearest neighbour distances of group members. While we find no relationship between group order and group size, we do find that larger groups tend to have lower nearest neighbour distances, which in turn may be important in maintaining group order.

13.
Sci Adv ; 3(6): e1603201, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28691088

RESUMO

Collective animal behavior is an emergent phenomenon arising from the local interactions of the members of animal groups. Considerable progress has been made in characterizing these interactions, particularly inferring rules that shape and guide the responses of animals to their near neighbors. To date, experimental work has focused on collective behavior within a single, stable context. We examine the individual and collective behavior of a schooling fish species, the x-ray tetra (Pristella maxillaris), identifying their response to changes in context produced by food cues or conspecific alarm cues. Fish exposed to alarm cues show pronounced, broad-ranging changes of behavior, including reducing speed and predictability in their movements. Alarmed fish also alter their responses to other group members, including enacting a smaller zone of repulsion and increasing their frequency of observation of, and responsiveness to, near neighbors. Fish subject to food cues increased speed as a function of neighbor positions and reduced encounter frequency with near neighbors. Overall, changes in individual behavior and the interactions among individuals in response to external cues coincide with changes in group-level patterns, providing insight into the adaptability of behavior to changes in context and interrelationship between local interactions and global patterns in collective behavior.


Assuntos
Comportamento Animal , Sinais (Psicologia) , Peixes/fisiologia , Animais , Locomoção
14.
PLoS Genet ; 11(4): e1005112, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25880558

RESUMO

Why are mitochondria almost always inherited from one parent during sexual reproduction? Current explanations for this evolutionary mystery include conflict avoidance between the nuclear and mitochondrial genomes, clearing of deleterious mutations, and optimization of mitochondrial-nuclear coadaptation. Mathematical models, however, fail to show that uniparental inheritance can replace biparental inheritance under any existing hypothesis. Recent empirical evidence indicates that mixing two different but normal mitochondrial haplotypes within a cell (heteroplasmy) can cause cell and organism dysfunction. Using a mathematical model, we test if selection against heteroplasmy can lead to the evolution of uniparental inheritance. When we assume selection against heteroplasmy and mutations are neither advantageous nor deleterious (neutral mutations), uniparental inheritance replaces biparental inheritance for all tested parameter values. When heteroplasmy involves mutations that are advantageous or deleterious (non-neutral mutations), uniparental inheritance can still replace biparental inheritance. We show that uniparental inheritance can evolve with or without pre-existing mating types. Finally, we show that selection against heteroplasmy can explain why some organisms deviate from strict uniparental inheritance. Thus, we suggest that selection against heteroplasmy explains the evolution of uniparental inheritance.


Assuntos
Genes Mitocondriais , Haplótipos , Mitocôndrias/genética , Modelos Genéticos , Seleção Genética , Animais , Evolução Molecular , Humanos
15.
Proc Natl Acad Sci U S A ; 108(46): 18726-31, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22065759

RESUMO

Collective motion, where large numbers of individuals move synchronously together, is achieved when individuals adopt interaction rules that determine how they respond to their neighbors' movements and positions. These rules determine how group-living animals move, make decisions, and transmit information between individuals. Nonetheless, few studies have explicitly determined these interaction rules in moving groups, and very little is known about the interaction rules of fish. Here, we identify three key rules for the social interactions of mosquitofish (Gambusia holbrooki): (i) Attraction forces are important in maintaining group cohesion, while we find only weak evidence that fish align with their neighbor's orientation; (ii) repulsion is mediated principally by changes in speed; (iii) although the positions and directions of all shoal members are highly correlated, individuals only respond to their single nearest neighbor. The last two of these rules are different from the classical models of collective animal motion, raising new questions about how fish and other animals self-organize on the move.


Assuntos
Comportamento Animal/fisiologia , Peixes/fisiologia , Poecilia/fisiologia , Algoritmos , Animais , Modelos Biológicos , Modelos Estatísticos , Movimento/fisiologia , Comportamento Social , Software , Natação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...