Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 589: 119788, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882369

RESUMO

Skin model cultivation under static conditions limits the observation of the toxicity to this single organ. Biology-inspired microphysiological systems associating skin with a liver in the same circulating medium provide a more comprehensive insight into systemic substance toxicity; however, its advantages or limitations for topical substance toxicity remain unknown. Herein, we performed topical (OECD test guideline no. 439) and systemic administration of terbinafine in reconstructed human skin (RHS) vs. a RHS plus liver model cultured in TissUse' HUMIMIC Chip2 (Chip2). Aiming for a more detailed insight into the cutaneous substance irritancy/toxicity, we assessed more than the MTT cell viability: lactate dehydrogenase (LDH), lactate and glucose levels, as well as inherent gene expressions. Sodium dodecyl sulfate (SDS) was the topical irritant positive control. We confirmed SDS irritancy in both static RHS and Chip2 culture by the damage in the morphology, reduction in the lactate production and lower glucose consumption. In the static RHS, the SDS-treated tissues also released significantly high LDH (82%; p < 0.05) and significantly lower IL-6 release (p < 0.05), corroborating with the other metabolic levels. In both static RHS and Chip2 conditions, we confirmed absence of irritancy or systemic toxicity by LDH, glucose or lactate levels for topical 1% and 5% terbinafine and systemic 0.1% terbinafine treatment. However, topical 5% terbinafine treatment in the Chip2 upregulated IL-1α in the RHS, unbalanced apoptotic and proliferative cell ratios in the liver and significantly increased its expression of CYP1A2 and 3A4 enzymes (p < 0.05), proving that it has passed the RHS barrier promoting a liver impact. Systemic 0.1% terbinafine treatment in the Chip2 increased RHS expression of EGFR, increased apoptotic cells in the liver, downregulated liver albumin expression and upregulated CYP2C9 significantly (p < 0.05), acting as an effective hepatotoxic terbinafine control. The combination of the RHS and liver model in the Chip2 allowed a more sensitive assessment of skin and hepatic effects caused by chemicals able to pass the skin (5% terbinafine and SDS) and after systemic 0.1% terbinafine application. The present study opens up a more complex approach based on the microphysiological system to assess more than a skin irritation process.


Assuntos
Preparações Farmacêuticas , Humanos , Irritantes/farmacologia , Dispositivos Lab-On-A-Chip , Pele , Dodecilsulfato de Sódio/toxicidade
2.
Int J Pharm ; 507(1-2): 12-20, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27130364

RESUMO

For an improved understanding of the relevant particle features for cutaneous use, we studied the effect of the surface charge of acrylic nanocapsules (around 150nm) and the effect of a chitosan gel vehicle on the particle penetration into normal and stripped human skin ex vivo as well as local tolerability (cytotoxicity and irritancy). Rhodamin-tagged nanocapsules penetrated and remained in the stratum corneum. Penetration of cationic nanocapsules exceeded the penetration of anionic nanocapsules. When applied on stripped skin, however, the fluorescence was also recorded in the viable epidermis and dermis. Cationic surface charge and embedding the particles into chitosan gel favored access to deeper skin. Keratinocytes took up the nanocapsules rapidly. Cytotoxicity (viability<80%), following exposure for ≥24h, appears to be due to the surfactant polysorbate 80, used for nanocapsules stabilization. Uptake by fibroblasts was low and no cytotoxicity was observed. No irritant reactions were detected in the HET-CAM test. In conclusion, the surface charge and chitosan vehicle, as well as the skin barrier integrity, influence the skin penetration of acrylic nanocapsules. Particle localization in the intact stratum corneum of normal skin and good tolerability make the nanocapsules candidates for topical use on the skin, provided that the polymer wall allows the release of the active encapsulated substance.


Assuntos
Quitosana/administração & dosagem , Quitosana/química , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Absorção Cutânea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/efeitos adversos , Quitosana/farmacocinética , Derme/metabolismo , Epiderme/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Géis/administração & dosagem , Géis/efeitos adversos , Géis/química , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Nanocápsulas/efeitos adversos , Tamanho da Partícula , Ácidos Polimetacrílicos/administração & dosagem , Ácidos Polimetacrílicos/efeitos adversos , Ácidos Polimetacrílicos/química , Polissorbatos/administração & dosagem , Polissorbatos/efeitos adversos , Polissorbatos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA