Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8012): 603-608, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750234

RESUMO

Natural iron fertilization of the Southern Ocean by windblown dust has been suggested to enhance biological productivity and modulate the climate1-3. Yet, this process has never been quantified across the Southern Ocean and at annual timescales4,5. Here we combined 11 years of nitrate observations from autonomous biogeochemical ocean profiling floats with a Southern Hemisphere dust simulation to empirically derive the relationship between dust-iron deposition and annual net community production (ANCP) in the iron-limited Southern Ocean. Using this relationship, we determined the biological response to dust-iron in the pelagic perennially ice-free Southern Ocean at present and during the last glacial maximum (LGM). We estimate that dust-iron now supports 33% ± 15% of Southern Ocean ANCP. During the LGM, when dust deposition was 5-40-fold higher than today, the contribution of dust to Southern Ocean ANCP was much greater, estimated at 64% ± 13%. We provide quantitative evidence of basin-wide dust-iron fertilization of the Southern Ocean and the potential magnitude of its impact on glacial-interglacial timescales, supporting the idea of the important role of dust in the global carbon cycle and climate6-8.


Assuntos
Ciclo do Carbono , Clima , Poeira , Ferro , Oceanos e Mares , Água do Mar , Poeira/análise , Camada de Gelo , Ferro/análise , Nitratos/análise , Água do Mar/química
2.
Open Res Eur ; 2: 118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645295

RESUMO

BACKGROUND: Biogeochemical-Argo floats are collecting an unprecedented number of profiles of optical backscattering measurements in the global ocean. Backscattering (BBP) data are crucial to understanding ocean particle dynamics and the biological carbon pump. Yet, so far, no procedures have been agreed upon to quality control BBP data in real time. METHODS: Here, we present a new suite of real-time quality-control tests and apply them to the current global BBP Argo dataset. The tests were developed by expert BBP users and Argo data managers and have been implemented on a snapshot of the entire Argo dataset. RESULTS: The new tests are able to automatically flag most of the "bad" BBP profiles from the raw dataset. CONCLUSIONS: The proposed tests have been approved by the Biogeochemical-Argo Data Management Team and will be implemented by the Argo Data Assembly Centres to deliver real-time quality-controlled profiles of optical backscattering. Provided they reach a pressure of about 1000 dbar, these tests could also be applied to BBP profiles collected by other platforms.

3.
Nature ; 597(7876): 370-375, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526706

RESUMO

Droughts and climate-change-driven warming are leading to more frequent and intense wildfires1-3, arguably contributing to the severe 2019-2020 Australian wildfires4. The environmental and ecological impacts of the fires include loss of habitats and the emission of substantial amounts of atmospheric aerosols5-7. Aerosol emissions from wildfires can lead to the atmospheric transport of macronutrients and bio-essential trace metals such as nitrogen and iron, respectively8-10. It has been suggested that the oceanic deposition of wildfire aerosols can relieve nutrient limitations and, consequently, enhance marine productivity11,12, but direct observations are lacking. Here we use satellite and autonomous biogeochemical Argo float data to evaluate the effect of 2019-2020 Australian wildfire aerosol deposition on phytoplankton productivity. We find anomalously widespread phytoplankton blooms from December 2019 to March 2020 in the Southern Ocean downwind of Australia. Aerosol samples originating from the Australian wildfires contained a high iron content and atmospheric trajectories show that these aerosols were likely to be transported to the bloom regions, suggesting that the blooms resulted from the fertilization of the iron-limited waters of the Southern Ocean. Climate models project more frequent and severe wildfires in many regions1-3. A greater appreciation of the links between wildfires, pyrogenic aerosols13, nutrient cycling and marine photosynthesis could improve our understanding of the contemporary and glacial-interglacial cycling of atmospheric CO2 and the global climate system.


Assuntos
Monitoramento Ambiental , Eutrofização , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Incêndios Florestais/estatística & dados numéricos , Aerossóis/análise , Aerossóis/química , Atmosfera/química , Austrália , Clorofila A/análise , Imagens de Satélites , Estações do Ano , Fuligem/análise
4.
Talanta ; 197: 653-668, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771989

RESUMO

A seawater preconcentration system (seaFAST) with offline sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) detection was critically evaluated for ultra-low trace elemental analysis of Southern Ocean samples over a four-year period (2015-2018). The commercially available system employs two Nobias PA1 resin columns for buffer cleaning and sample preconcentration, allowing salt matrix removal with simultaneous extraction of a range of trace elements. With a primary focus on method simplicity and practicality, a range of experimental parameters relevant to oceanographic analysis were considered, including reduction of blank levels (over weeks and years), instrument conditioning, extraction efficiencies over different pH ranges (5.8-6.4), and preconcentration factors (~10-70 times). Conditions were optimised for the analysis of ten important trace elements (Cd, Co, Cu, Fe, Ga, Mn, Ni, Pb, Ti and Zn) in open ocean seawater samples, and included initial pre-cleaning and conditioning of the seaFAST unit for one week before each separate analytical sequence; a controlled narrow buffer pH of 6.20 ±â€¯0.02 used for extraction; and a sample preconcentration factor of 10 for (relatively) concentrated rainwater or sea ice, 40 for typical seawater samples, and up to 67 times for seawater samples collected in the remote open ocean such as the Southern Ocean. Method accuracy (both short - days to weeks - and long term - months to years) were evaluated through extensive analysis of a range of oceanographic standard reference samples including SAFe D1 (n = 20), D2 (n = 3), S (n = 15), GEOTRACES GD (n = 6), GSC (n = 42) and GSP (n = 42), as well as NASS-6 (n = 6). Measured values for oceanographic samples were found to agree with consensus values to within ±â€¯6% for Cd, Cu, Fe, Ni, Pb and Zn. Offsets were noted for Co (labile fraction only; no UV oxidation), Mn (difference also noted in other recent studies) and Ti (limited reference values). No consensus values currently exist for Ga. Iron and Mn in Southern Ocean samples were also independently verified via flow injection analysis methods (R2 = 0.95, n = 244 (Fe) and 0.92, n = 85 (Mn), paired t-test, p ≪0.05). Precisions over four years were evaluated through analysis of community seawater samples as well as a range of bulk in-house seawaters (3 sources, each n~100) and acid blanks (n = 250), and were typically found to be within 5-8%, depending on analyte and concentration. Values presented here represent one of the largest independent data sets for these reference samples, as well as the most documented comprehensive suite of GSP and GSC values currently available (consensus values have not yet been released). Samples covering a range of salinities (0-60) were investigated to demonstrate method versatility, with excellent recoveries noted using the seaFAST Nobias PA1 column (>98% for most elements, with 70-80% for Ga and Ti). By way of example, data is presented showing the application of the method to samples collected on the Kerguelen plateau in the Indian sector of the Southern Ocean (HEOBI voyage, January-February 2016) and in land-fast ice and brine collected near Davis station, Antarctica, in austral summer 2015 (with a salinity range from 0 to 73 g kg-1). Finally, a range of recommendations for successful implementation of a seaFAST system are provided, along with considerations for future investigation.

5.
PLoS One ; 10(7): e0133235, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26171963

RESUMO

Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.


Assuntos
Transporte de Elétrons/fisiologia , Ferro/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Fitoplâncton/metabolismo , Carbono/metabolismo , Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Meio Ambiente , Luz , Oceanos e Mares , Fitoplâncton/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...