Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 156: 111643, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321157

RESUMO

It is well known that the orthotropic tissue structure decisively influences the mechanical and electrical properties of the heart. Numerous approaches to compute the orthotropic tissue structure in computational heart models have been developed in the past decades. In this study, we investigate to what extent different Laplace-Dirichlet-Rule-Based-Methods (LDRBMs) influence the local orthotropic tissue structure and thus the electromechanical behaviour of the subsequent cardiac simulation. In detail, we are utilising three Laplace-Dirichlet-Rule-Based-Methods and compare: (i) the local myofibre orientation; (ii) important global characteristics (ejection fraction, peak pressure, apex shortening, myocardial volume reduction, fractional wall thickening); (iii) local characteristics (active fibre stress, fibre strain). We observe that the orthotropic tissue structures for the three LDRBMs show significant differences in the local myofibre orientation. The global characteristics myocardial volume reduction and peak pressure are rather insensitive to a change in local myofibre orientation, while the ejection fraction is moderately influenced by the different LDRBMs. Moreover, the apical shortening and fractional wall thickening exhibit a sensitive behaviour to a change in the local myofibre orientation. The highest sensitivity can be observed for the local characteristics.


Assuntos
Coração , Modelos Cardiovasculares , Humanos , Simulação por Computador , Análise de Elementos Finitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...